
Finitary Permutation Groups

Combinatorics Study Group
Notes by Chris Pinnock

“You wonder and you wonder until
you wander out into Infinity,

where - if it is to be found
anywhere - Truth really exists.”

Marita Bonner,
On Being Young – A Woman – and Colored

in The Crisis Dec 1925.

A finitary permutation group is a natural generalization of a finite per-
mutation group. The structure of a transitive finitary permutation group
is surprisingly simple when its degree is infinite. Here we study primitivity,
following P. M. Neumann’s work in the 1970s. We also study generalized
solubility conditions on these groups. These notes arose from lectures aimed
at an audience who had seen some basic permutation group theory, but little
abstract group theory.

1 Definitions and Constructions

1.1 Introduction

Throughout, Ω is a set (usually but not always infinite) and Sym(Ω) is the
group of all permutations of Ω. One cannot hope to prove deep group-
theoretic theorems about subgroups of Sym(Ω) when Ω is infinite; for since
any group G embeds as a regular subgroup of Sym(G), we would be proving
theorems about all groups. Thus we need to restrict our groups with a
finiteness condition. Here we discuss such a condition.
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Infinite algebra tends to rely on the Axiom of Choice. I have indicated its
use throughout. It would be interesting to see what happens to the theory
of finitary permutation groups without such an axiom.

Definition Let g ∈ Sym(Ω). The support of g on Ω is the set

suppΩ(g) = {ω ∈ Ω : ωg 6= ω} ,

that is, the set of elements of Ω which g does not fix. Clearly Ω = suppΩ(g)t
fixΩ(g). Call g finitary on Ω is suppΩ(g) is finite, or equivalently if fixΩ(g) is
cofinite in Ω. That is, if g “fixes most” of Ω.

Example. (1234) and (12)(34)(56) are finitary permutations of the natural
numbers N but

∏∞
n=1(2n− 1, 2n) is not.

Lemma 1.1. Let g, h ∈ Sym(Ω). Then

1. suppΩ(gh) ⊆ suppΩ(g) ∪ suppΩ(h),

2. suppΩ(g−1) = suppΩ(g),

3. suppΩ(g) = ∅ if and only if g = 1.

Proof. 1. Suppose that ωgh 6= ω and ω 6∈ suppΩ(g). Then ωg = ω, so
ωh = (ωg)h 6= ω. Therefore ω ∈ suppΩ(h).

2. This follows since ωg−1 6= ω if and only if ω 6= ωg.
3. The permutation g fixes all the points of Ω if and only if g = 1.
Let FSym(Ω) be the set of all finitary permutations. By 1.1, FSym(Ω) is

a subgroup of Sym(Ω), called the finitary symmetric group on Ω.

Exercise. Show that FSym(Ω) is a normal subgroup of Sym(Ω).

Examples.

1. If |Ω| = n is finite then FSym(Ω) = Sym(Ω) ∼= Sn.

2. Let (Ωi)i∈I be a family of finite sets and for each i ∈ I, let Gi ≤
Sym(Ωi). Let G be the direct product Dri∈IGi (that is, the set of all
sequences (gi)i∈I with gi ∈ Gi such that all but finitely many of the gi
are 1). Let Ω be the disjoint union

⊔
i∈I Ωi. Then G is a finitary permu-

tation group on Ω, where the components of G act on the corresponding
components of Ω.

There are two more fundamental types of finitary permutation groups.
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1.2 Generalized Wreath Products

The development we follow here is from Robinson [11]. Let I be a linearly
ordered set (for example N with the natural ordering), let (Ωi)i∈I be a family
of sets and for each i ∈ I let Hi be a transitive subgroup of Sym(Ωi). Choose
an element 1i from each Ωi (note that we have used the Axiom of Choice
here when I is infinite). Let Ω be the set direct product of the Ωi with
the respect to the elements 1i, namely the set of all sequences (ωi)i∈I with
ωi ∈ Ωi such that ωi = 1i for all but finitely many i ∈ I. Set 1 = (1i)i∈I (not
to be confused with the identity of a group).

Let x = (xi)i∈I and y = (yi)i∈I be elements of Ω. Then for j ∈ I we write
x ≡ y mod j if xi = yi for all i > j.

Let h ∈ Hj, x = (xi)i∈I ∈ Ω and define hΩ as follows. If x ≡ 1 mod j,
then (xhΩ)j = xjh and (xhΩ)i = xi when i 6= j. If x 6≡ 1 mod j then xhΩ = x.
This gives a one-to-one homomorphism Hj → Sym(Ω), h 7→ hΩ. Let Pj be
the image of this homomorphism. The wreath product of the family (Hi)i∈I
is

W = Wri∈IHi = 〈Pi : i ∈ I〉 ,≤ Sym(Ω).

Lemma 1.2. Using the notation above:

1. W does not depend on the choice of the elements 1i.

2. W is transitive on Ω.

3. Let I = N with the natural ordering and let each Hi be a finite permu-
tation group. Then

W = Wr∞i=0Hi = H0 WrH1 WrH2 Wr . . . ≤ FSym(Ω).

4. Let I = {1 < 2} and let H1 and H2 be finite permutation groups. Then
W = H1 WrH2, the wreath product of Peter Cameron’s notes.

Proof. This is left as an exercise (see [11] volume 2, pages 18-19 for some of
the details). Note that in 3, if h ∈ Hi then

|suppΩ(hΩ)| = |suppΩi
(h)||Ωi−1| . . . |Ω0|.

Exercise. Show that if in Lemma 2 part 3 one takes I = N with the reverse
ordering, then W = . . .WrH2 WrH1 WrH0 is not finitary.
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1.3 Alternating Groups

Let g ∈ FSym(Ω). One can write g as a finite product of finite orbits and
thus as a finite product of transpositions (xy) where x 6= y, for example
(1234) = (12)(13)(14).

Lemma/Definition 1.3. Let g ∈ FSym(Ω).

1. If g has a decomposition into m transpositions and a decomposition
into n transpositions then m ≡ n mod 2. Denote this common value
modulo 2 by σ(g).

2. σ : FSym(Ω)→ Z/2Z is a group homomorphism called the sign map.

The second part of 1.3 holds since sums of even integers are even, sums
of odd integers are even and the sum of an odd integer and an even integer
is even. We call g odd if σ(g) = 1 and even if σ(g) = 0.

The kernel of σ is called the alternating group on Ω, denoted Alt(Ω).
That is,

Alt(Ω) = {g ∈ FSym(Ω) : g is even } .

If |Ω| ≥ 2 then FSym(Ω)/Alt(Ω) ∼= Z/2Z and for |Ω| = 1, we have 1 =
Alt(Ω) = FSym(Ω) = Sym(Ω).

Recall that a group G is simple if it has precisely two normal subgroups,
necessarily G and 1, and G 6= 1.

Theorem 1.4 (Galois). For |Ω| ≥ 5, the group Alt(Ω) is simple.

The infinite simple finitary permutation groups are known (see 2.6 below).
The Classification of Finite Simple Groups gives us the finite ones.

2 Primitivity and Imprimitivity

Throughout this section G is a transitive subgroup of FSym(Ω) and Ω is an
infinite set, unless stated otherwise.

2.1 Primitivity

A G-congruence on Ω is an equivalence relation which G preserves. A G-
block of Ω is a subset Γ ⊆ Ω such that for every g ∈ G either Γg = Γ or
Γg ∩ Γ = ∅. The equivalence classes of a G-congruence form a family of
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disjoint G-blocks whose union is Ω. Such a family of blocks is called a G-
system of imprimitivity of Ω. Conversely, given one G-block Γ, the set of
translates {Γg : g ∈ G} is a G-system of imprimitivity of Ω, from which one
can recover a G-congruence.

The group G is primitive if the only G-congruences on Ω are the diagonal
one {(ω, ω) : ω ∈ Ω} and the universal one {Ω}. Clearly G is primitive if
and only if the only G-blocks on Ω are the singletons and Ω. We say G is
imprimitive otherwise.

There is not much to say about primitive finitary permutation groups of
infinite degree, except that they are rare.

Theorem 2.1 (The Jordan-Wielandt Theorem). Let G be a primitive
subgroup of FSym(Ω). Then G = Alt(Ω) or FSym(Ω).

For a proof of 2.1, see [15] Satz 9.4.

2.2 Imprimitivity

We now study imprimitive groups. The following work is due to P. M. Neu-
mann in his papers [4, 5]. At around the same time, D. Segal developed
similar ideas in [8, 9].

Lemma 2.2. Let G ≤ FSym(Ω). Then any proper G-block of Ω is finite.

Proof. Choose a block Γ ⊂ Ω. Pick ω1 ∈ Γ and ω2 ∈ Ω \ Γ. Since G is
transitive, there is g ∈ G such that ω1g = ω2. Thus Γg ∩ Γ = ∅. Therefore
Γ ⊆ suppΩ(g), which is finite.

The following theorem is a modification of 1.4 in Peter’s notes.

Theorem 2.3 (The Fundamental Theorem of Imprimitivity). Let Γ
be a proper block of G and ∆ be the set of translates {Γg : g ∈ G}. Then
the permutation group H induced on ∆ is finitary. If G0 is the permutation
group induced on Γ by its setwise stabilizer in G, then Ω can be identified
with Γ× Ω so that G ↪→ G0 WrH. Also G0 is a finite permutation group.

Proof. Since G is finitary, H acts finitarily on the set of translates ∆.
There are two cases of imprimitivity to look at.

Case 1. G has a maximal proper1 block Γ0. Call such a group G almost
primitive.

1throughout, “proper block” means proper non-singleton block.
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The following theorem explains the name “almost primitive”.

Proposition 2.4. Let G be an almost primitive subgroup of FSym(Ω). Then
G has a quotient H which is isomorphic to one of Alt(Ω) or FSym(Ω). More
precisely, G ↪→ G0 WrH where G0 is a finite permutation group and H is a
primitive finitary permutation group of infinite degree.

Proof. Let Γ be a maximal proper G-block of Ω and G0, H,∆ be as in 2.3.
Let Θ be a H-block of ∆. Let Γ0 be the union of all elements of Θ. Then Γ0

is a block of G in Ω. Since each translate of Γ is also a maximal proper G-
block of Ω and Γ0 contains a translate of Γ, it follows that Γ0 is one translate
of Γ or the whole of Ω. Thus Θ is singleton or is ∆. In other words, H is
primitive. The rest of the result follows from 2.3.

Case 2. If G is imprimitive and has no maximal proper block then call G
totally imprimitive.

Proposition 2.5. Let G be a totally imprimitive subgroup of FSym(Ω).

1. Let ∆ be a finite subset of Ω. Then there is a proper block Γ of G such
that ∆ ⊆ Γ.

2. |Ω| = ℵ0

The second part of 2.5 says that any transitive finitary permutation group
of uncountable degree is either primitive or almost primitive. We can use
Proposition 2.5 to construct arbitrarily large G-blocks of Ω. This is a justi-
fication for the name “totally imprimitive”.

Proof. Using the Axiom of Choice, there is a strictly ascending chain Γ0 ⊂
Γ1 ⊂ Γ2 ⊂ . . . of blocks. Put Θ =

⋃∞
i=0 Γi. Now Θ is a countable union of

finite sets and is infinite. Thus |Θ| = ℵ0. Also Θ is a block. By 2.2, Θ = Ω
and hence |Ω| = ℵ0. Since ∆ is a finite subset of Ω, there is j such that
∆ ⊆ Γj. Take Γ = Γj.

Given a proper block Γ of a totally imprimitive subgroup G of FSym(Ω),
we have G ↪→ G0 Wr H, where H acts finitarily on the infinite set ∆ =
{Γg : g ∈ G} as in 2.3. If H is primitive or ∆ has a maximal proper H-block
then Ω has a maximal proper G-block, a contradiction. Thus H is totally
imprimitive. Inductively, we see that G embeds into a generalized wreath
product G0 WrG1 WrG2 Wr . . . of finite permutation groups Gi.
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2.3 A consequence of the Jordan-Wielandt Theorem

By Galois’ Theorem 1.4, the infinite alternating groups are simple. These
groups are the only infinite simple finitary permutation groups.

Theorem 2.6 (Mihles/Tys̆kevic̆). Let G be an infinite simple finitary per-
mutation group. Then G = Alt(Ω) for some infinite set Ω.

Proof. Let (Ωi)i∈I be the orbits of G. The point stabilizer Ni of Ωi is a
normal subgroup of G. Now one of the Ni 6= G. By simplicity, Ni = 1. Put
Ω = Ωi. Then G acts transitively and faithfully on Ω.

If G is primitive then by the Jordan-Wielandt theorem we have G =
Alt(Ω). When G is almost primitive, G has an image containing Alt(Θ) as
a normal subgroup for some infinite set Θ. By simplicity, G = Alt(Θ).

If G is totally imprimitive then choose 1 6= g ∈ G and put ∆ = suppΩ(g).
There is a proper block Γ containing ∆ by 2.5. Now for any x ∈ G we have
(Γx) g = Γx. Thus the intersection S of the stabilizers of the Γx, as x ranges
through G, is non-trivial. Also S � G. Since Γ is a proper block, S 6= G.
Thus G cannot be simple. The result follows.

3 An application

A group G has finite Prüfer rank n if every finitely generated subgroup of G
can be generated by n elements, and n is the least integer with this property.
If no such n exists we say that G has infinite Prüfer rank. Note that if G has
finite Prüfer rank then so does its subgroups and images.

Theorem 3.1 ([7]). Let G be a transitive subgroup of FSym(Ω) and suppose
that G has finite Prüfer rank. Then the set Ω is finite.

In order to prove this theorem, it is enough to compute the rank of two
types of group.

Lemma 3.2. Let p be a prime and Ω be an infinite set.

1. The rank of C
(n)
p , the direct product of n copies of Cp, is n.

2. FSym(Ω) and Alt(Ω) have infinite rank.
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Proof. 1. Let G = C
(n)
p . Then the rank of G is simply the dimension of G as

a vector space over Fp, which is n.

2. The group C
(n)
p embeds into Sym(pn) and each Sym(pn) embeds into

FSym(Ω). Thus FSym(Ω) has infinite rank. To see that Alt(Ω) has infinite
rank, note that Sym(pn) embeds into Alt(pn + 2).

Exercise. Let g, h ∈ Sym(Ω). Suppose that suppΩ(g) ∩ supp Ω(h) = ∅.
Show that gh = hg.

The Proof of 3.1: We suppose that Ω is infinite. By 3.2, FSym(Ω) and
Alt(Ω) have infinite rank. Thus by 2.1 and 2.4, G is totally imprimitive.

Since G is locally finite, we can choose an element g ∈ G of prime order
p. Put ∆ = suppΩ(g). Now ∆ is a finite non-empty set. By 2.5, we can
choose a G-congruence with blocks (Ωi)i∈I such that ∆ ⊆ Ω1, say.

Using the transitivity of G, there is xi ∈ G such that Ω1xi = Ωi. Now
for every i ∈ I, we have suppΩ(gxi) = ∆xi ⊆ Ωi. Thus the gxi commute.

Furthermore, it is easy to see that 〈gxi|i ∈ I〉 ∼= C
(I)
p . Now I is an infinite

set, so C
(I)
p has infinite rank by 3.2. Thus G does not have finite rank. This

is a contradiction. Hence Ω must be finite.

4 The commutator subgroup

and soluble groups

4.1 The shifting property

A transitive finitary permutation group G on an infinite set Ω has the prop-
erty that for any finite subset ∆ of Ω, one can find a permutation in G that
moves ∆ away from itself completely. This result is a form of Neumann’s
Lemma. In order to prove this, we use a result due to B. H. Neumann and
two facts which we leave as exercises. For a different proof, see Cameron [1]
Theorem 6.2.

Lemma 4.1 (B. H. Neumann [3]). Let n be a positive integer and let G
be a group. Suppose that G is the union of n cosets of subgroups C1, C2, . . . , Cn:

G =
n⋃
i=1

Cigi.

Then the index of at least one of these subgroups in G does not exceed n.
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Exercise. Let G ≤ Sym(Ω) and let α ∈ Ω. The stabilizer of α in G is

Gα = {g ∈ G : αg = α} .

1. Show that Gα is a subgroup of G.

2. Show that (G : Gα) = |αG|.

3. Let G be transitive. Prove that for α, β ∈ Ω the set {g ∈ G : αg = β}
is a right coset of Gα.

Theorem 4.2 (P. M. Neumann). Let G ≤ FSym(Ω), with G transitive
and Ω infinite. Suppose that ∆ is a finite subset of Ω. Then there is g ∈ G
such that ∆g ∩∆ = ∅.

Proof. Suppose that ∆g ∩ ∆ 6= ∅ for every g ∈ G. Then for every g ∈ G
there are elements δ1, δ2 ∈ ∆ such that δ1g = δ2. Thus

G =
⋃

δ1,δ2∈∆

{g ∈ G : δ1g = δ2} .

Now for any δ1, δ2 ∈ ∆, the set {g ∈ G : δ1g = δ2} is a coset of the stabilizer
Gδ1 . Since ∆ is finite, G is the union of a finite family of cosets of stabilizers
Gδ, for δ ∈ ∆. By Lemma 4.1, at least one of the Gδ has finite index in G.
But then δG is finite, contradicting the transitivity of G on the infinite set
Ω.

Exercise. Some proofs of the Jordan-Wielandt Theorem use the above
result 4.2. Suppose that the Jordan-Wielandt Theorem is true by other
means and use the results of section 2 to prove 4.2.

4.2 Soluble and Nilpotent Groups

Let G be any group and x, y ∈ G. The commutator of x and y is [x, y] =
x−1y−1xy. Let H,K ≤ G. The commutator of H and K is

[H,K] = 〈[h, k] : h ∈ H, k ∈ K〉 .

The (1st) derived subgroup of G is G′ = G(1) = [G,G]. For every non-
negative integer n there is an n-th derived subgroup, G(n), defined inductively
as follows. Let G(0) = G. Then given G(i), define G(i+1) to be the group
(G(i))′ = [G(i), G(i)] for i ≥ 0.
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Note that G(i) is a normal subgroup of G for all i ≥ 0. Also G′ is the
smallest, by inclusion, normal subgroup N of G such that G/N is abelian.
Thus G is abelian if and only if G′ = 1. We call G perfect if G′ = G. If
G(n) = 1 for some integer n then we say that G is soluble (of derived length
≤ n).

Let Z(G) be the (1st) centre of G, that is

Z(G) = {x ∈ G : xg = gx ∀g ∈ G} .

For every nonnegative integer n, there is an n-th centre ζn(G) of G defined
as follows:

Put ζ0(G) = 1. Then given ζi(G), define ζi+1(G) to be the normal sub-
group of G such that

ζi+1(G)

ζi(G)
= Z

(
G

ζi(G)

)
.

Note that Z(G) = ζ1(G) and G is abelian if and only if ζ1(G) = G. The
group G is called centerless if ζ1(G) = 1. If ζc(G) = G for some integer c
then G is nilpotent (of class ≤ c).

Clearly, an abelian group is nilpotent and a nilpotent group is soluble.
The converses are not true. For Sym(3) is a centerless soluble group and D8,
the dihedral group of order 8, is nilpotent but is not abelian.

Proposition 4.3. Let G be an abelian transitive subgroup of FSym(Ω). Then
Ω is finite.

Proof. We may assume that G 6= 1. We show that G is regular; that is, if
1 6= g ∈ G then fixΩ(g) = ∅. For then suppΩ(g) = Ω for any 1 6= g ∈ G and
thus Ω is finite.

Suppose that 1 6= g ∈ G and that ω ∈ fixΩ(g). Let h ∈ G. Then

(ωh)g = ωgh = ωh.

Thus ωh ∈ fixΩ(g). Hence Ω = ωG = fixΩ(g). But then g = 1. Since g 6= 1,
we have fixΩ(g) = ∅, as required.

Exercise. Let G be a transitive subgroup of FSym(Ω) where Ω is an infinite
set. Show that G is centerless (and hence cannot be nilpotent).

We shall prove 4.3 for soluble groups later.

Proposition 4.4. Let G ≤ FSym(Ω) where Ω is infinite. Let N � G. If G
is transitive and G/N cannot be represented as a finitary permutation group
of infinite degree, then N is transitive.
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Proof. The orbits of N on Ω form a G-system of imprimitivity of Ω (that is,
they are the equivalence classes of a G-congruence), say (Ωi)i∈I .

Suppose that N is not transitive. Then each Ωi is a proper block of Ω and
so each Ωi is finite. Now G permutes these blocks transitively and finitarily
(see 2.3) and N stabilizes these blocks. Thus G/N acts transitively and
finitarily on the blocks Ωi. Moreover, since each Ωi is finite, and Ω is infinite
and the union of the Ωi, it follows that G/N can be represented as a transitive
finitary permutation group of infinite degree. This is a contradiction. Thus
N is transitive.

Corollary 4.5. Let G ≤ FSym(Ω) where Ω is infinite. If G is transitive
then the commutator subgroup G′ is transitive.

Proof. By 4.3, G/G′ cannot be represented as a finitary transitive permuta-
tion group of infinite degree. By 4.4, G′ is transitive.

We now show that G′ is a “relatively large” subgroup of a transitive
finitary permutation group G of infinite degree. In particular, G′ is the
minimal normal transitive subgroup of G.

Theorem 4.6 (P. M. Neumann). Let G ≤ FSym(Ω) where Ω is infinite.

1. Suppose that N �G with N transitive. Then G′ ≤ N .

2. If G is transitive then G′ is perfect.

Proof. 1. Let g, h ∈ G. We show that [g, h] ∈ N . Put ∆ = suppΩ(g) ∪
suppΩ(h). By 4.2, there is x ∈ N such that ∆∩∆x = ∅. Now suppΩ(gx) and
suppΩ(hx) are subsets of ∆x and suppΩ(g−1), suppΩ(h−1) and suppΩ(gh) are
subsets of ∆. Thus gx and hx commute with g−1, h−1 and gh. Let

c = [g, x][h, x][(gh)−1, x].

Then
c = (x−1)gxxh(x−1)(gh)−1

x ∈ N
since N is a normal subgroup of G, and

c = g−1gxh−1hxgh((gh)−1)x

= g−1h−1ghgxhx((gh)−1)x

= [g, h](gh(gh)−1)x = [g, h].

That is, [g, h] ∈ N . Therefore G′ ≤ N .
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2. By 4.5, G′ and G′′ = (G′)′ are transitive. By part 1, G′ ≤ G′′.
Therefore G′ = G′′, as required.

Corollary 4.7 (J. Wiegold [14]). Let G ≤ FSym(Ω) where Ω is infinite.
If G is transitive, then G is not soluble.

5 Local conditions

5.1 Definition of Local Properties

The study of soluble subgroups of FSym(Ω) when Ω is infinite is not interest-
ing by 4.7. Here we study subgroups of FSym(Ω) that have a “local soluble
structure” rather than a “global soluble structure”.

Let P be a property of groups. A group G is locally-P if every finitely
generated subgroup of G has the property P .

Examples.

1. A locally abelian group G is abelian. For if x, y ∈ G then 〈x, y〉 is
abelian. Thus x and y commute for all x, y ∈ G.

2. Let Ω be any set. Every subgroup of FSym(Ω) is locally finite. For
if x1, x2, . . . , xn ∈ FSym(Ω) then the support of any element that is a
product of the xi is contained in the finite set

⋃n
i=1 suppΩ(xi). Thus

〈x1, . . . , xn〉 can be regarded as a subgroup of Sym(
⋃n
i=1 suppΩ(xi)) and

thus is finite.

5.2 Locally Soluble Groups

Locally soluble transitive finitary permutation groups of infinite degree exist.
For example, let G be the group Wr∞i=2Ci where Ci is the cyclic group of order
i. ThenG is locally soluble and is a transitive subgroup of FSym({2, 3, 4, . . .}).
Locally soluble finitary permutations groups satisfy a global generalized sol-
ubility condition.

Theorem 5.1 (P. M. Neumann). Let G ≤ FSym(Ω) and suppose that G
is locally soluble. Then G is hyperabelian of height ≤ ω. That is, there is a
series

1 = G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .
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of G with each Gn �G, the union
⋃
n∈NGn = G and each factor Gn+1/Gn is

abelian.

In 5.1, ω is the first infinite ordinal. Note that for Ω infinite, neither
Alt(Ω) nor FSym(Ω) can be locally soluble. Thus G has to be totally im-
primitive on any infinite orbit Ω. One uses similar results to 2.5 to prove that
the permutation group on Ω induced by G is hyperabelian of height ≤ ω.
If Ω is finite then the induced permutation group of G on Ω is soluble and
in particular is hyperabelian of height < ω. Since G embeds into the direct
product of the groups induced from G on the orbits of G, it follows that G
is hyperabelian of height ≤ ω.

5.3 Locally Nilpotent Groups

Let p be a prime. A p-group is a group in which every element has order a
power of p. A finite p-group is nilpotent and thus a locally finite p-group is
locally nilpotent. Note that there are centerless infinite p-groups.

Let G = Wr(N,<)C2. Now G is a transitive subgroup of FSym(N). It is a
locally finite 2-group and thus is locally nilpotent. In fact, given any prime p
and a sequence (an)n∈N of natural numbers, the wreath product Wrn∈NCpan is
a transitive p-subgroup of FSym(N). Moreover, given two different sequences
(an)n∈N and (bn)n∈N, the groups Wrn∈NCpan and Wrn∈NCpbn are not isomor-
phic. The number of sequences of natural numbers if 2ℵ0 . It follows that
there are at least 2ℵ0 transitive finitary locally nilpotent p-groups of infinite
degree.

The only locally nilpotent finitary transitive permutation groups of infi-
nite degree are p-groups.

Theorem 5.2 (D. A. Suprunenko). Let G be a transitive subgroup of FSym(Ω)
where Ω is infinite. If G is locally nilpotent, then G is a p-group for some
prime p.

A locally finite, locally nilpotent group G is a direct product of p-groups
([12] 12.1.1). The following lemma finishes the proof of 5.2.

Lemma 5.3. Let G = X × Y ≤ FSym(Ω) and suppose that G is transitive.
If both X and Y are non-trivial, then Ω is a finite set.
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Proof. Let 1 6= y ∈ Y . Put ∆ = suppΩ(y). Then ∆ is finite and non-empty.
If x ∈ X then x and y commute, so if ω ∈ ∆ then

(ωx)y = ωyx 6= ωx

and so ωx ∈ ∆. Thus ∆x = ∆. Hence Ω = ∆G = ∆XY = ∆Y . Now ∆ is a
union of X-orbits and so Ω is a union of finite X-orbits, since Ω =

⋃
z∈Y ∆z.

In exactly the same way, Ω is a union of finite Y -orbits, say
⋃
i∈I Ωi. Since

∆ is finite, there exist i1, i2, . . . , in such that ∆ ⊆
⋃n
j=1 Ωij . Therefore Ω =

∆Y =
⋃n
j=1 Ωij , a finite set.

We can generalize Suprunenko’s theorem.

Lemma 5.4. Let G ≤ FSym(Ω) where Ω is infinite and G is transitive. Let
p be a prime. If G′ is a p-group then G is a p-group.

Proof. Let g ∈ G. Put ∆ = suppΩ(g). By 4.2, there is x ∈ G such that
∆ ∩∆x = ∅. Since suppΩ(gx) ⊆ ∆x, the elements gx and g commute. Thus
|[g, x]| = |gxg| = |g|. The lemma follows.

Theorem 5.5 ([6]). Let G ≤ FSym(Ω) where Ω is infinite and G is tran-
sitive. Suppose that G has a locally nilpotent normal subgroup N such that
one of the following hold:

1. G/N is abelian;

2. G/N is soluble;

3. G/N is hypercentral;

4. G/N satisfies a non-trivial law;

5. G/N has finite Prüfer rank.

Then G is a p-group for some prime p.

Proof. The point here is that in cases 2, 3, 4 and 5, G/N cannot be repre-
sented as a transitive finitary permutation group of infinite degree (we discuss
some of these conditions in the next section). Hence N is transitive by 4.4.
Using 4.6, G′ ≤ N . Thus G/N is abelian and we are in case 1. By 5.2, N is
a p-group for some prime p and so G′ is a p-group. By Lemma 5.4, G is a
p-group.
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6 Further Results

In this section we list some more results which were not given in the lectures.

6.1 Results of Segal and Wiegold

In [9] Segal studies almost primitive groups, there called Class A groups. In
[8], he generalizes 2.6 as follows:

Theorem 6.1. Every infinite simple factor of a finitary permutation group
is isomorphic to a full alternating group.

Let G be a group. Define the i-th centre ζi(G) as before but for any
ordinal i, taking ζl(G) =

⋃
i<l ζi(G) for limit ordinals l. We say that G is

hypercentral (of central height ≤ α) if ζα(G) = G. In [14], Wiegold proves
the following (in addition to 4.7).

Theorem 6.2. Let G ≤ FSym(Ω). If G is hypercentral then G has finite
orbits in Ω and has central height ≤ ω.

6.2 More results of P. M. Neumann

Neumann simultaneously generalized results of Giorgetta and Wiegold and
proved the following.

Theorem 6.3 ([4]). If G ≤ FSym(Ω) and G satisfies some non-trivial law
then all the G-orbits of Ω are finite. Consequently such a G is residually
finite and an FC-group.

In the same paper, he proves 5.1. Similar methods yield the following
result.

Theorem 6.4 ([4]). If there is a finite group which is not isomorphic to a
section of G then all orbits of G are finite or countable (and totally imprim-
itive). Moreover, there is a series

1 = G0 ≤ G1 ≤ . . . ≤ Gn ≤ . . .

where Gn � G, the union
⋃
n∈NGn = G and each Gn+1/Gn embeds into a

restricted direct power of some finite group.

15



6.3 A result of Wehrfritz

Theorem 6.5 ([13]). Let H �G ≤ FSym(Ω). Suppose that for some posi-
tive integer n there is a set X of generators of G such that | suppΩ(x)| ≤ n
for every x ∈ X. If H is a 〈P,L〉A-group then the orbits of H have length
≤ 2n.

For a detailed description of the local operator L and the poly operator
P, one should refer to Robinson [11]. Here A is the class of all abelian groups.
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Inst. Univ. Tübingen, 1960

17


