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are common to all supersoluble groups.

The main result of chapter 3 is a conjugacy theorem of Philip Hall regarding
Hall π-subgroups in finite groups. In chapter 4 we present some characterization
theorems for finite supersoluble groups, including theorems of Huppert, Kramer
and Iwasawa. We also give a necessary and sufficient condition for finite super-
solubility in terms of the converse of Lagrange’s Theorem. Chapter 5 presents
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Introduction

A supersoluble group is a group which can be broken down into cyclic groups
by means of a normal series. The class of supersoluble groups sits between
the classes of finitely generated nilpotent groups and polycyclic groups. Super-
soluble groups are, in some sense, more like nilpotent groups than polycyclic
groups. Finite supersoluble groups have some very nice characterizations in
terms of their subgroup structure, as we shall see.

We shall need a few preliminary results. In particular, we list some results
regarding cyclic groups. As these are the “building blocks” of supersoluble
groups, these results ought to be essential in the development of the theory.
Results involving automorphism groups of cyclic groups are important because
of the normal structure of a supersoluble group.

It is assumed that the reader has a working knowledge of the material in an
undergraduate Group Theory course. The contents of [2] is more than ample
for our needs. A few well-known results will be referred to by a common name,
for example:

•The Modular Law (or Dedekind’s Rule) ([11] 7.3).

•Lagrange’s Theorem ([12] I.2.j).

•The Isomorphism and Correspondence Theorems ([2] §1).

•Sylow’s Theorem ([11] 5.9).

•The Schur-Zassenhaus Theorem ([10] 9.1.2 or [11] 10.30).

Throughout, G will always denote a group. The symbol 1 will be used to
denote both the identity of a group and the trivial subgroup, but in a manner
that will not cause confusion. We shall write all homomorphisms on the right
and shall use the standard notation for subgroups, normal subgroups and pre-
sentations. We shall write Cn for the abstract cyclic group of order n, namely
< x : xn = 1 >, and Z for the additive group of integers (the infinite cyclic group
up to isomorphism). Sym(n) and Alt(n) denote the symmetric group and al-
ternating group on n letters, respectively. V will be used to denote the group
< (12)(34), (13)(24) >; that is, the copy of the Klein 4-group inside Alt(4).
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By a series 1 of G, we mean a finite sequence of subgroups

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

such that Gi � Gi+1 for all 0 ≤ i < n. The number n is called the length of
the series, the groups G0, G1, ..., Gn are called the terms of the series and the
quotient groups G1/G0, G2/G1, ..., Gn/Gn−1 are called the factors of the series.
A normal series of G is a series whose terms are normal subgroups of G.

A composition series of G is a series whose factors are simple. A chief factor
of G is a quotient H/K where H,K�G and H/K is a minimal normal subgroup
of G/K. A chief series of G is a normal series whose factors are chief.

Let P be a property of groups.
A poly-P series is a series whose factors have the property P. G is called

poly-P if it has a poly-P series. For example, G is called polycyclic if it has a
series whose factors are cyclic. Note that a group is soluble if it is polyabelian.

If Q is also a property of groups, then G is said to be P-by-Q if there is
N � G such that N has property P and G/N has property Q. It is clear that
the properties poly-P and P-by-Q are preserved by isomorphism provided that
the properties P and Q are preserved by isomorphism.

If H ≤ G, we have the normalizer of H in G,

NG(H) = {g ∈ G : Hg = H}

and the centralizer of H in G,

CG(H) = {g ∈ G : hg = h for all h ∈ H}.

If K � H � G then G acts by conjugation on H/K in the obvious way. With
regard to this action, we have the centralizer of H/K in G,

CG(H/K) = {g ∈ G : (hK)g = hK for all h ∈ H}.

Note that the normalizer in this case is always the whole group G.
We shall denote the group of automorphisms of group X by AutX.
If g1, g2, ..., gn ∈ G then we shall write [g1, g2] for g−1

1 g−1
2 g1g2. Recursively,

define
[g1, ..., gn] = [[g1, ..., gn−1], gn],

for n > 2. If H1,H2, ...,Hn ≤ G, then we shall write [H1,H2] for the subgroup

< [h1, h2] : h1 ∈ H1, h2 ∈ H2 > .

Recursively define

[H1,H2, ...,Hn] = [[H1,H2, ...,Hn−1],Hn]

for n > 2. In particular, the derived subgroup of G is G′ = [G,G].
1WARNING: In some literature (e.g. in [13]), what we have called series are called “normal

series” and what we shall call normal series are referred to as “invariant series”.
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G = γ1G ≥ γ2G ≥ γ3G ≥ ... denotes the lower central series of G and
1 = ζ0G ≤ ζ1G ≤ ζ2G ≤ ... denotes the upper central series of G. In particular,
ζ1G is the centre of G. In general, a central series of G is a series

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

such that [Gi, G] ≤ Gi−1 for all 0 < i ≤ n or equivalently, a normal series

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

for which Gi/Gi−1 ≤ ζ1(G/Gi−1) for all 0 < i ≤ n. G is called nilpotent if it
has a central series.

If H ≤ G, then the core of H in G is

HG =
⋂
g∈G

Hg

which is the largest normal subgroup of G contained in H.
If H � G, K ≤ G, HK = G and H ∩ K = 1, then we say that K is a

complement of H in G and that H is a normal complement of K in G. Also we
say that G is the semi-direct product of H by K, denoted H]K.

ΦG denotes the Frattini subgroup of G, namely the intersection of all maximal
subgroups of G, or G if no such subgroups exist. Equivalently, ΦG is the set of
all non-generators of G.

η1G denotes the Fitting subgroup of G, namely the subgroup generated by
all normal nilpotent subgroups of G.

We list some fairly trivial facts:

0.1 (a) Let X, Y ≤ G. Then (XY : Y )l = (X : X ∩ Y ).

(b) If q is the smallest prime dividing the order of finite group G and H ≤ G
with (G : H) = q then H �G.

Proof: (a) An example of a bijection {x(X ∩ Y ) : x ∈ X} −→ {xY : x ∈ X} is
the map x(X ∩ Y ) 7−→ xY .

(b) see [10] 1.6.10. 2

0.2 (a) Cn has a unique subgroup of order d, for each divisor d of n. Z has
a unique subgroup of each finite index and these are all the subgroups of
Z. Thus, all subgroups of a cyclic group are characteristic.

(b) Alt(4) has no subgroup of order 6 and V is its only proper non-trivial
normal subgroup. Alt(4) is polycyclic (i.e. soluble). 2

0.3 The Normalizer/Centralizer Theorem. Let X be a subgroup or a quotient
of a normal subgroup of G. Then there is a homomorphism NG(X) −→ AutX,
with kernel CG(X). In particular, NG(X)/CG(X) ↪→ AutX. 2

2H ↪→ G means H can be embedded into G
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Proof: The homomorphism is given by g 7→ (x 7→ xg) for g ∈ NG(X), x ∈
CG(X). 2

Theorem 0.4 Suppose that V is a vector space of dimension n ≥ 1 over Fp,
the field of p elements, and that G is a group of linear automorphisms acting
irreducibly on V . If G is abelian of exponent dividing p−1 then V has dimension
1.

Proof: Given g ∈ G, gp−1 = 1. Thus g satisfies the equation Xp−1 − 1 = 0,
which splits over Fp. Thus g has a non-zero eigenvalue λ ∈ Fp. There is a
non-zero λ-eigenvector v of g and the λ-eigenspace of g, W = {u : ug = λu} is
non-trivial. Since G is abelian, uGg = ugG = λuG, for every u ∈ W . Thus W
is a G-invariant subspace of V . The irreducibility of the G-action gives W = V .
Hence ug = λu for all u ∈ V and so the G-action induces scalar multiplication
on V . Thus Fv is a G-invariant subspace of V . Therefore Fv = V and so V
has dimension 1. 2

0.5 (a) The automorphism group of a cyclic group is a finite abelian group.
Furthermore, |AutZ| = 2 and for a prime p, |AutCp| = p− 1.

(b) Let N be a minimal normal subgroup of finite group G. Suppose N is an
elementary abelian p-group. Then |N | = p if and only if G/CG(N) is
abelian of exponent dividing p− 1.

Proof: (a) See [13], §5.7.
(b) If |N | = p then by 0.3, G/CG(N) can be embedded into AutN , which has

order p− 1. Thus G/CG(N) is abelian of exponent dividing p− 1. Conversely,
let |N | = pr. Since N is an elementary abelian p-group, it may be regarded as
the vector space of dimension r over Fp. Since N is a minimal normal subgroup,
the group G/CG(N) regarded as linear transformations of N , acts irreducibly
on N . By 0.4, N is cyclic of order p. 2

We say that G satisfies max if it satisfies the following equivalent conditions:

1) Every non-empty set of subgroups of G has a maximal element.

2) Every subgroup of G is finitely generated.

We say that G satisfies min if every non-empty set of subgroups of G has a
minimal element.

0.6 Let H ≤ G and N �G.

(a) If G satisfies max (resp. min) then H satisfies max (resp. min).

(b) If N and G/N satisfy max (resp. min) then G satisfies max (resp. min).

Proof: (a) is clear. For a proof of (b) see [13] 7.1.3. 2

0.7 The Schreier Refinement Theorem. Any two series of G have refinements
whose lengths are equal and whose factors are isomorphic in pairs.
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Proof: See [11] 7.7. 2

0.8 Fitting’s Theorem. If M,N � G and are nilpotent, then so is MN . It
follows that η1G is nilpotent for finite group G.

Proof: See [10] 5.2.8. 2

0.9 Let G be a finite group. Then:

(a) ΦG ≤ η1G.

(b) If N �G then ΦN ≤ ΦG.

(c) η1(G/ΦG) = η1G/ΦG.

(d) η1G =
⋂
{CG(H/K) : H/K is a chief factor of G}.

Proof: (a) ΦG is a nilpotent normal subgroup of G.
(b) Suppose that the result is false. Since ΦN is characteristic in N , it is

normal in G. There is a maximal subgroup M of G that does not contain ΦN .
Thus G = (ΦN)M . And then N = N∩G = N∩(ΦN)M = (ΦN)(N∩M). Thus
N ∩M ≤ N . If N ∩M < N , let N1 be a maximal subgroup of N containing
N ∩ M so that N = (ΦN)N1. But by definition ΦN ≤ N1, so N = N1,
contradiction. If N ∩M = N , then ΦN ≤ N ≤ M , contradiction. Thus the
result must be true.

(c) η1G is nilpotent, so η1G/ΦG is nilpotent. It follows that η1G/ΦG ≤
η1(G/ΦG). To prove the reverse inclusion, set N/ΦG = η1(G/ΦG). Let P be
a Sylow p-subgroup of N . PΦG/ΦG is the unique Sylow p-subgroup of N/ΦG,
since N/ΦG is nilpotent. Thus PΦG/ΦG is characteristic in N/ΦG and so is
normal in G/ΦG. Hence PΦG�G. P is a Sylow p-subgroup of PΦG.

We claim that G = NG(P )ΦG. If g ∈ G then P g ≤ (PΦG)g = PΦG. So
P g is a Sylow p-subgroup of PΦG. By Sylow’s Theorem, there is x ∈ PΦG
with P gx = P . Then gx ∈ NG(P ), and so g ∈ NG(P )x−1 ⊂ NG(P )PΦG =
NG(P )ΦG. The reverse inclusion is clear.

Let ΦG =< x1, ..., xn >. Then G = NG(P )ΦG =< NG(P ), x1, ..., xn >.
The xi are non-generators of G since they lie in ΦG and so it follows that
G = NG(P ). That is, P �G. Thus P �N . It follows that N is nilpotent and
so N ≤ η1G. Hence η1(G/ΦG) = N/ΦG ≤ η1G/ΦG.

(d) Let A =
⋂
{CG(H/K) : H/K is a chief factor of G} and choose a

chief series of G, say 1 = G0 < G1 < ... < Gn = G. Then

1 = G0 ∩A < G1 ∩A < ... < Gn ∩A = A

is a normal series of A. Further, it is a central series; for [Gi∩A,A] ≤ A and [Gi∩
A,A] ≤ [Gi, A] ≤ [Gi, CG(Gi/Gi−1)],≤ Gi−1, since we have CG(Gi/Gi−1) =
{g ∈ G : [Gi, g] ≤ Gi−1}, so that [Gi ∩ A,A] ≤ Gi ∩ A. Thus A is a nilpotent
normal subgroup of G, whence A ≤ η1G.
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Conversely, if H/K is a chief factor of G, it is a minimal normal subgroup of
G/K. Now (η1G)K/K �G/K, thus by the minimality of H/K we have either
H/K ∩ (η1G)K/K = 1 or H/K ≤ (η1G)K/K.

In the first case [H, η1G] ≤ H ∩ η1G ≤ (H ∩ η1G)K = H ∩ (η1G)K ≤ K. It
follows that η1G ≤ CG(H/K).

To deal with the second case, note that (η1G)K/K ∼= η1G/K ∩ η1G is
nilpotent. So H/K ∩ ζ1((η1G)K/K) 6= 1. Thus H/K ≤ ζ1((η1G)K/K) so
that [H/K, (η1G)K/K] = 1. Hence [H, η1G] ≤ [H, (η1G)K] ≤ K and thus,
η1G ≤ CG(H/K).

It follows that η1G ≤ A. 2

0.10 Let G be a finite soluble group. Then:

(a) A minimal normal subgroup M of G is an elementary abelian normal p-
subgroup for some prime p.

(b) Suppose ΦG = 1. Then η1G is the direct product of (abelian) minimal
normal subgroups of G.

(c) CG(η1G) ≤ η1G.

Proof: (a) M ′ is normal in G. Since M is soluble, M ′ < M . The minimality of
M yields that M ′ = 1. Thus M is abelian. Let p be a prime dividing |M |. If M
is not a p-group, choose another prime q dividing |M |. A Sylow q-subgroup S of
M is normal in M , since M is abelian. Thus S is the unique Sylow q-subgroup of
M . Hence S is characteristic in M and so S�G. This contradicts the minimality
of M . Thus M is a p-group. The subgroup Mp = {m ∈ M : mp = 1}, is a
non-trivial subgroup of M (M has an element of order p). Also Mp �G. Thus
Mp = M by the minimality of M . Hence M is an elementary abelian p-group.

(b) Choose L maximal among all subgroups of η1G which can be expressed
as the direct product of minimal normal subgroups of G (note that by (a), η1G
contains all such subgroups). Clearly, L � G. Choose S ≤ G minimal to the
condition that LS = G. Since L is abelian, S ∩ L � L. And S ∩ L � S, since
L�G. So S, L ≤ NG(S∩L) and hence NG(S∩L) ≥ SL = G. That is, S∩L�G.

If S ∩ L 6= 1 then since ΦG = 1, there is a maximal subgroup M that does
not contain S ∩ L. It follows from the maximality of M that G = M(S ∩ L),
since M < M(S ∩ L). Now S = S ∩ G = S ∩M(S ∩ L) = (S ∩M)(S ∩ L)
and S ∩ L 6⊆ M . Thus we must have S ∩M < S; for otherwise, S ∩M = S
implies that S ∩ L = M ∩ S ∩ L ≤ M , contradiction. Now we have G = SL =
(S ∩M)(S ∩ L)L = (S ∩M)L, but this contradicts the minimality of S to the
condition that SL = G. Therefore S ∩ L = 1.

Since η1G�G, we have S ∩ η1G�S. Let B be a maximal subgroup of η1G.
Since η1G is nilpotent, B � η1G. Then η1G/B is a simple nilpotent group and
so is abelian. Thus (η1G)′ ≤ B. Therefore (η1G)′ ≤ Φ(η1G) ≤ ΦG = 1. Thus
η1G is abelian. It follows that S ∩ η1G� η1G. Thus S ∩ η1G�Sη1G,= G since
G = SL ≤ Sη1G ≤ G.

If S ∩ η1G 6= 1 then there is an abelian minimal normal subgroup H of G
such that H ≤ S ∩ η1G. As S ∩ L = 1, it follows that L < L × H (this last
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product being direct, because L ∩ H ≤ L ∩ S ∩ η1G). But this contradicts
the maximality of L. Thus S ∩ η1G = 1. We now have the result, because
η1G = SL ∩ η1G = (S ∩ η1G)L = L.

(c) Set F = η1G and deny the result. Then F < FCG(F ). Choose a minimal
normal subgroup M/F in G/F contained inside FCG(F )/F . Then M�G. The
solubility of G and minimality of M/F gives M ′ ≤ F . Now we have [γiF,M ] ≤
[γiF, FCG(F )] = [γiF, F ][γiF,CG(F )] ≤ (γi+1F )[F, FCG(F )] = γi+1F . And F
is nilpotent, say γc+1F = 1. Then γc+2M ≤ [M ′,M, ...,M ] ≤ [F,M, ...,M ] =
[γ1F,M, ...,M ], where M appears c times, ≤ [γ2F,M, ...,M ], where M appears
c − 1 times, ≤ γc+1F = 1. But then M is a nilpotent normal subgroup and
F < M , contradiction. 2
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Chapter 1

Supersolubility

Definition. A supersoluble series of G is a normal series of G with cyclic factors.
G is called supersoluble if it has a supersoluble series.

Trivially, all cyclic groups are supersoluble and all supersoluble groups are
polycyclic. However not every polycyclic group is supersoluble; Alt(4) is poly-
cyclic but has no non-trivial normal cyclic subgroups and hence cannot possess
a normal series with cyclic factors.

In common with polycyclic, soluble and nilpotent groups, we have:

Proposition 1.1 Suppose H ≤ G and N �G, where G is a supersoluble group.
Then H and G/N are supersoluble.

Proof: G has a supersoluble series; that is, a normal series

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

with each Gi/Gi−1 cyclic. Since each Gi �G, each H ∩Gi �H and so we get
a normal series of H:

1 = H ∩G0 ≤ H ∩G1 ≤ ... ≤ H ∩Gn = H.

This is a supersoluble series of H because it has cyclic factors; for

(H ∩Gi)/(H ∩Gi−1) = (H ∩Gi)/((H ∩Gi) ∩Gi−1)

∼= (H ∩Gi)Gi−1/Gi−1 ≤ Gi/Gi−1,

which is cyclic. Thus H is supersoluble.
Since N �G, the subgroups GiN are normal in G and so by the Correspon-

dence Theorem we have a normal series of G/N ,

N/N = G0N/N ≤ G1N/N ≤ ... ≤ GnN/N = G/N.

This has cyclic factors because using the Isomorphism Theorems

(GiN/N)/(Gi−1N/N) ∼= GiN/Gi−1N = GiGi−1N/Gi−1N ∼= Gi/Gi ∩Gi−1N,
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and
Gi/Gi ∩Gi−1N ∼= (Gi/Gi−1)/(Gi ∩Gi−1N/Gi−1)

which is a quotient of a cyclic group and therefore is cyclic. Hence G/N is
supersoluble. 2

IfN�G, andN andG/N are both supersoluble, it is not necessarily true that
G is supersoluble; that is to say that an extension of a supersoluble group by a
supersoluble group is not always supersoluble. For example, V is a supersoluble
normal subgroup of Alt(4) (consider the supersoluble series 1 ≤ < (12)(34) >
≤ V , both of whose factors are isomorphic to C2) and Alt(4)/V is supersoluble
(it is isomorphic to C3) but as we have already seen, Alt(4) is not supersoluble.

However if N � G and G/N is supersoluble, applying the Correspondence
Theorem to a supersoluble series of G/N gives a normal series of G from N up
to G with cyclic factors.

If N � G and N has a series whose terms are normal in G and with cyclic
factors, then we say that N is G-supersoluble.

From the remark and definition we have:

1.2 If N � G, N is G-supersoluble and G/N is supersoluble then G is super-
soluble. In particular, a cyclic-by-supersoluble group is supersoluble. 2

A finitely generated abelian group A is supersoluble. Since the trivial group
is supersoluble, let A =< a1, ..., an > and inductively assume that abelian
groups generated by n − 1 generators are supersoluble. Now N =< a1 > �A
and A/N =< a2N, ..., anN >. By induction, A/N is supersoluble. N is cyclic,
so that A is supersoluble by 1.2. We shall deal with a more general situation
later - namely that of a finitely generated nilpotent group.

1.3 Let N �G and G be supersoluble. Then N occurs as a term in a supersol-
uble series of G.

Proof: There is a supersoluble series of G/N and hence a supersoluble series
between N and G (whose terms are normal in G). Take any supersoluble series
of G and intersect it with N to get a G-supersoluble series of N . Put these
series together to get the required one. 2

Proposition 1.4 (a) A direct product of finitely many supersoluble groups is
supersoluble.

(b) If H1,H2, ...,Hn are normal subgroups of G and the groups G/H1, G/H2, ..., G/Hn

are supersoluble, then G/
⋂n
i=1Hi is supersoluble.

Proof: (a) By using induction, it suffices to show that if G and K are super-
soluble then so is G×K. Given supersoluble series

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

and
1 = K0 ≤ K1 ≤ ... ≤ Km = K,
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we note that for all 1 ≤ i ≤ n, since Gi �G,

Gi × 1 = Gi ×K0 �G×K.

Similarly, for all 1 ≤ j ≤ m,

G×Kj �G×K.

Furthermore, by inspecting the factor groups

(Gi × 1)/(Gi−1 × 1) ∼= Gi/Gi−1 × 1/1 ∼= Gi/Gi−1

for 1 ≤ i ≤ n and

(G×Kj)/(G×Kj−1) ∼= G/G×Kj/Kj−1
∼= Kj/Kj−1

for 1 ≤ j ≤ m, we see that

1 = G0×1 ≤ G1×1 ≤ ... ≤ Gn×1 = G×K0 ≤ G×K1 ≤ ... ≤ G×Km = G×K

is a supersoluble series of G×K.
(b) Consider the homomorphismG −→ ×ni=1G/Hi, g 7−→ (gH1, gH2, ..., gHn).

It has kernel
⋂n
i=1Hi. It follows that G/

⋂n
i=1Hi ↪→ ×ni=1G/Hi which is super-

soluble by (a). The result follows by 1.1. 2

1.5 (a) A group is supersoluble if and only if it has a supersoluble series whose
factors are infinite or of prime order.

(b) A supersoluble group has a cyclic normal subgroup of infinite or prime
order.

(c) A simple supersoluble group is cyclic of prime order.

Proof: (a) Let G be supersoluble with supersoluble series

1 = G0 < G1 < G2 < ... < Gn = G

choosing the series to be proper (pick any supersoluble series and throw away
repititions of terms). If Gi/Gi−1 is cyclic of finite but not prime order, we
use the following method to refine the series to one that we require. Let p
be a prime dividing |Gi/Gi−1|. Since Gi/Gi−1 is cyclic, it has a unique cyclic
characteristic subgroup H/Gi−1 of order p. Thus H/Gi−1 � G/Gi−1 and so
H � G. Gi/H ∼= (Gi/Gi−1)/(H/Gi−1), a quotient of a cyclic group and thus
Gi/H is cyclic.

To summarize, we have added a term H between Gi−1 and Gi in our orig-
inal supersoluble series with H/Gi−1 cyclic of prime order and Gi/H cyclic of
finite order less than that of Gi/Gi−1. We can therefore apply this algorithm
repeatedly to get the desired supersoluble series in a finite number of steps.

The converse is trivial.
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(b) By (a), every supersoluble group has a supersoluble series whose factors
have infinite or prime order. The first non-trivial term in such a series is of the
required type.

(c) Let G be supersoluble and simple. By (b), G is cyclic of prime or infinite
order. G can’t have infinite order because an infinite cyclic group is not simple.
2

1.6 (a) A minimal normal subgroup of a supersoluble group is cyclic of prime
order.

(b) A chief factor of a supersoluble group is cyclic of prime order.

(c) A supersoluble group with a chief series is a finite group.

(d) G is a finite supersoluble group if and only if it has a chief series with
cyclic factors of prime order.

Proof: (a) By 1.3, if N is a minimal normal subgroup of G then N is G-
supersoluble. But then N must be simple, by minimality. Now apply 1.5 (c).

(b) A chief factor of G, a supersoluble group, is a minimal normal subgroup
of some quotient of G. Quotient groups of G are supersoluble by 1.1 and thus
by (a), a chief factor of G has prime order.

(c) If supersoluble group G has a chief series then each factor of this series is
finite by (b). The order of G is equal to the product of the orders of the factors
of this chief series and so G must be finite.

(d) A finite group has a chief series and thus a finite supersoluble group
has a chief series with cyclic of prime order factors by (a). Conversely, a chief
series with cyclic factors is a normal series with cyclic factors and hence is a
supersoluble series. 2

Supersoluble groups satisfy the following finiteness condition.

Proposition 1.7 A supersoluble group satisfies max.

Proof: A subgroup of a cyclic group is cyclic and in particular finitely gener-
ated, so all cyclic groups satisfy max. By using induction on the length of a
supersoluble series and 0.6(b), a supersoluble group satisfies max. 2

Since finite groups satisfy max, polycyclic-by-finite groups satisfy max also.

A supersoluble group does not necessarily satisfy min. An easy example is Z;
for the set of subgroups {2nZ : n = 1, 2, 3, ...} has no minimal element.

1.8 (a) If a supersoluble group G has a composition series then it is finite.

(b) If a supersoluble group G satisfies min then it is finite.

Proof: (a) Given a composition series, each factor is both simple and supersol-
uble and thus by 1.5(c) is cyclic of prime order. Thus G must be finite.

12



(b) Since Z doesn’t satisfy min, it cannot occur as a factor in any supersoluble
series of G by 0.6. Thus any supersoluble series of G has finite factors and so
G must be finite.

Alternatively, one can apply (a) by noting that by 1.7, G is a group satisfying
both max and min and therefore has a composition series. 2

It follows from 1.7 that maximal subgroups exist in non-trivial supersoluble
groups. A subgroup of prime index is clearly maximal. In a supersoluble group,
the converse is true.

Theorem 1.9 The index of a maximal subgroup in a supersoluble group is
prime.

Proof: Let H be a maximal subgroup of G, a supersoluble group. If H is a
normal subgroup of G then the result is trivial; for since G/H is supersoluble
and simple, by 1.5(c) it must be cyclic of prime order. We can therefore assume
that H is not normal in G and put K = HG. Then H/K is a maximal subgroup
of supersoluble group G/K and (G : H) = (G/K : H/K). Thus, without loss
of generality, we may assume that K = 1.

By 1.5(b), the supersolubility of G ensures the existence of a normal sub-
group A of G, where A is infinite cyclic or cyclic of prime order. Every subgroup
of A is normal in G (by 0.2). Since HG = K = 1, A ∩ H = 1. So H < AH
and by maximality of H we have G = AH. If A is infinite then A has a proper
non-trivial subgroup B and H < BH < AH = G, contradicting the maximality
of H. Thus A must be cyclic of prime order. Then

(G : H) = (AH : H) = (A : A ∩H) = (A : 1) = |A|,

which is prime. 2

Later we shall show that if G is a finite group in which each maximal sub-
group has prime index, then G is supersoluble.

Theorem 1.10 Let G be a supersoluble group. Then:

(a) η1G is nilpotent and G/η1G is a finite abelian group.

(b) G is nilpotent-by-(finite abelian). In particular, G′ is nilpotent.

Proof: By 1.7, G satisfies max. Thus η1G is finitely generated, say η1G =<
x1, x2, ..., xn >. By definition of η1G, each generator xi lies in a nilpotent normal
subgroup, say xi ∈Mi, so that

η1G =< x1, x2, ..., xn >≤M1M2...Mn ≤ η1G.

So η1G = M1M2...Mn , the product of finitely many nilpotent subgroups. By
Fitting’s Theorem (0.8), η1G is nilpotent.

Choose a proper supersoluble series of G,

1 = G0 < G1 < ... < Gn = G.

13



Let C =
⋂n
i=1 CG(Gi/Gi−1),�G.

Each automorphism group Aut(Gi/Gi−1) is finite abelian by 0.5. Also
G/CG(Gi/Gi−1) ↪→ Aut(Gi/Gi−1) by 0.3. G/C ↪→ ×ni=1G/CG(Gi/Gi−1) (cf.
proof of 1.4(b)), so that G/C ↪→ ×ni=1 Aut(Gi/Gi−1). Hence G/C is a finite
abelian group. Now each CG(Gi/Gi−1) = {g ∈ G : [Gi, g] ≤ Gi−1}. Thus,

[Gi ∩ C,C] ≤ [Gi, C] ≤ [Gi, CG(Gi/Gi−1)] ≤ Gi−1.

And
[Gi ∩ C,C] ≤ [C,C] ≤ C.

Therefore [Gi ∩ C,C] ≤ Gi−1 ∩ C, for i = 1, ..., n. Hence the subgroups Gi ∩ C
give a central series of C, whence C is nilpotent and C ≤ η1G.

G/C abelian implies that G′ ≤ C , ≤ η1G and thus G′ is nilpotent. Also
G/η1G is abelian. Moreover (G : η1G)(η1G : C) = (G : C). Thus G/η1G is
finite. 2

Nilpotency is neither a necessary or sufficient condition for supersolubility.
For example,

⊕
ℵ0
Z, the direct sum of a countably infinite number of copies of

Z, is a nilpotent group but is not finitely generated, so it cannot be supersoluble
by 1.7. Also, Sym(3) is a supersoluble group which is not nilpotent (it has trivial
centre). However V is a nilpotent and supersoluble group.

It is natural to search for criteria that ensure that a nilpotent group is su-
persoluble and it is the condition of a group being finitely generated that distin-
guishes the supersoluble nilpotent groups from the non-supersoluble nilpotent
groups.

Theorem 1.11 Let G be nilpotent. G is supersoluble if and only if it is finitely
generated.

Proof: By 1.7, supersoluble G is finitely generated. For the converse, suppose
G =< X > is a nilpotent group with X a finite set. Set

Gn =< [x1, ..., xn]g : each xi ∈ X, g ∈ G > .

We claim that Gn = γnG.
Clearly G1 = G = γ1G by definition, so inductively assume that if n > 1

then Gn−1 = γn−1G. Every conjugate of every generator of Gn is in Gn so that
Gn � G. Further [x1, x2, ..., xn] ∈ γnG so that Gn−1 ≤ γnG. Set N = Gn and
then H = G/N =< X > /N =< xiN : xi ∈ X >. Now [[x1, ..., xn−1]N,xnN ] =
[x1, ..., xn]N = N . Hence every [x1, ..., xn−1]N centralizes every xnN in H.
That is, every [x1, ..., xn−1]N centralizes every generator of H and thus it follows
that each [x1, ..., xn−1]N ∈ ζ1H. Then [x1, ..., xn−1]gN ∈ ζ1(HgN ) = ζ1H, so
that γn−1G/Gn = Gn−1/N ≤ ζ1H = ζ1(G/Gn). Thus [γn−1G/Gn, G/Gn] =
Gn/Gn. That is γnG = [γn−1G,G] ≤ Gn, completing the proof of the claim.

Clearly [x1, ..., xn]g = [x1, ..., xn][x1, ..., xn, g] and [x1, ..., xn, g] ∈ Gn+1 =
γn+1G, thus we see that γnG/γn+1G is generated by all elements

[x1, ..., xn]gγn+1G = [x1, ..., xn]γn+1G
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. Since X is finite, γnG/γn+1G is generated by the finite set {[x1, ..., xn]γn+1G :
xi ∈ X}. Suppose that γnG/γn+1G =< yiγ

n+1G : i = 1, ..., r >. Set Ki =<
γn+1G, y1, ..., yi >. Then for each i, since y1, ..., yi ∈ γnG and γn+1G ≤ γnG we
have [Ki, G] ≤ [γnG,G] = γn+1G. Hence Ki/γ

n+1G � G/γn+1G and Ki � G.
Further Ki/Ki−1 =< yiKi−1 > which is cyclic. Thus we have constructed a
series with cyclic factors whose terms are normal in G from γn+1G to γnG, viz.

γn+1G = K0 ≤ K1 ≤ ... ≤ Kr = γnG

for any n. Since G is nilpotent, γdG = 1 for some integer d. Thus we have
found a supersoluble series of G. Hence G is supersoluble. 2

1.11 together with 1.7 gives:

Corollary 1.12 Every finitely generated nilpotent group satisfies max. 2

We can summarize some of the results of this chapter by means of a diagram:

f.g. nilpotent ⇒ supersoluble ⇒ polycyclic
≡ soluble + max

⇓ ⇓

nilpotent ⇒ soluble

To see that every soluble group G satisfying max is polycyclic, note that
the factors of any soluble series of G must be finitely generated, are therefore
finitely generated abelian groups and thus they are finite direct products of
cyclic groups. We can therefore refine a soluble series of G to a polycyclic
series.

The converses of the above implications are not true. For example, we have
seen previously that Alt(4) is a polycyclic group which is not supersoluble and
that Sym(3) is a supersoluble group that is not nilpotent.

1.10 says that a supersoluble group is nilpotent by finite abelian. Therefore
the notion of a supersoluble group is nearer to that of a finitely generated
nilpotent group than to that of a polycyclic group.

If we consider only finite groups, the above diagram reduces to the following:
nilpotent ⇒ supersoluble ⇒ soluble ≡ polycyclic
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Chapter 2

Supersoluble Series

The main goal of this section is to specify certain forms of supersoluble se-
ries that are common to all supersoluble groups. The strategy here is to take
a supersoluble series of a group, “rearrange” its factors and produce another
supersoluble series which has a nicer form.

Given a supersoluble series

1 = G0 ≤ G1 ≤ ... ≤ Gn = G,

to avoid complication, we shall say that the “factors from left to right” are
G1/G0, G2/G1, ..., Gn/Gn−1 As we shall be referring to the order of the factors
in this way, we shall avoid confusion by sometimes calling the order of a group
its magnitude.

Every supersoluble group has a useful numerical invariant.

Theorem 2.1 Any two supersoluble series of group G have the same number
of infinite factors.

In fact, the same result holds for any two polycyclic-by-finite series of a
polycyclic-by-finite group. We call this invariant the Hirsch number 1 of G.

Proof: By the Schreier Refinement Theorem (0.7), any two supersoluble series
of supersoluble group G have refinements whose factors are isomorphic in pairs.
We can therefore complete the proof by showing that a supersoluble series of G
and any of its refinements have the same number of infinite factors.

Suppose
1 = G0 ≤ G1 ≤ ... ≤ Gn = G

is a supersoluble series with Gi/Gi−1 infinite cyclic for some i. Suppose further
that

Gi−1 = H0 < H1 < ... < Hm = Gi
1after Kurt August Hirsch (1906-1986), first Professor of Pure Mathematics at Queen Mary

College, University of London. He published several papers on infinite soluble groups and was
the first to seriously study polycyclic groups.
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with each Hj �G and each Hj/Hj−1 non-trivial. Now 1 < H1/H0 ≤ Gi/H0 =
Gi/Gi−1

∼= Z so that H1/H0 is infinite cyclic. Moreover it is isomorphic to a
non-trivial subgroup of Z and thus has finite index in Gi/Gi−1. Since

(Gi/Gi−1 : H1/H0) = (Hm/H0 : H1/H0) = |(Hm/H0)/(H1/H0)| = |Hm/H1|,

Hm/H1 is a finite group. We have shown that a supersoluble series and its
refinements have the same number of infinite cyclic factors and so the result
follows. 2

By 1.5 every supersoluble group has a supersoluble series with its factors
infinite or of prime order. We now look at ways of “arranging” such factors in
a supersoluble series.

2.2 The First Rearrangement Lemma. Let 1 < H < K < G be a normal series
of G with H and K/H cyclic.

(a) If |H| = q < p = |K/H|, where p and q are primes, then there is R � G
with R ≤ K such that |R| = p and |K/R| = q.

(b) If H is infinite and K/H has odd prime order p then either K is infinite
cyclic or there is R�G with R ≤ K such that |R| = p and K/R is infinite
cyclic.

(c) If H has order 2 and K/H is infinite then there are R1, R2 � G with
R1 < R2 < G, R1 infinite cyclic and both R2/R1,K/R1 are cyclic of
order 2.

Proof: (a) K must have order pq. Let R be the Sylow p-subgroup of K (unique-
ness is given by the fact that the number of Sylow p-subgroups of K is congruent
to 1 modulo p, divides the prime q and q < p). R is normal in G. Furthermore
|R| = p and |K/R| = pq/p = q.

(b) H is an abelian group and therefore H ≤ CK(H). Since H is normal
in K, there is a homomorphism φ : K −→ AutH with kernel CK(H), by 0.3.
Since H ≤ Kerφ, the map φ′ : K/H −→ AutH , kH 7−→ kφ for k ∈ K, is a
well-defined homomorphism whose kernel is CK(H)/H. But K/H ∼= Cp, p an
odd prime and AutH ∼= C2, so that φ′ must be trivial. Thus CK(H)/H = K/H
and so K = CK(H). Hence H ≤ ζ1K ≤ K.

The simplicity of K/H ∼= Cp implies that ζ1K = K or H. K/ζ1K is never
a non-trivial cyclic group (for any group K), so ζ1K 6= H. Thus K is abelian.
We note also that K is supersoluble of Hirsch number 1. By 1.7, K is a finitely
generated abelian group. Let T be its torsion subgroup. T is characteristic in K
and thus is a normal subgroup of G. K/T is a direct product of a finite number
of copies of Z; for K/T is a torsion-free finitely generated abelian group. Also
K/T is supersoluble and must have Hirsch number 1, since T is finite. Thus
K/T ∼= Z. Since H is torsion-free, T ∩H = 1. Thus

T ∼= T/T ∩H ∼= TH/H ≤ K/H ∼= Cp.
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Then T = 1 or T ∼= Cp. If T = 1, that is if K is torsion-free, then K ∼= K/T ∼= Z.
If otherwise, put R = T ; for then R�G, K/R ∼= Z and R ∼= Cp.

(c) K/H is infinite cyclic and so is generated by some Hk where k ∈ K
and k has infinite order. Thus K = H < k >. Since H is finite and < k > is
infinite, H∩ < k >= 1. Also since H is cyclic of order 2, H =< h >, where
h2 = 1. Since hk must have order 2 and also lie in H, we have hk = h, so that
[H, k] = 1. It follows that K = H× < k >. Set R1 = K2 =< x2 : x ∈ K >.
Since K is a normal subgroup of G and (x2)g = (xg)2 for every g ∈ G, R1 is
a normal subgroup of G. Moreover, R1 = (H× < k >)2 =< k2 > since H has
order 2. Thus R1 is infinite cyclic. Note that

|K/R1| = |(H× < k >)/ < k2 > | = |H × C2| = 4.

Set R2 = HK2. Then R1 < R2 < K. Since H and K2 are normal subgroups of
G, R2 is a normal subgroup of G. Further,

|R2/R1| = |HK2/K2| = |H/H ∩K2| = |H| = 2,

as H ∩K2 = 1, and

|K/R2| = |(K/R1)/(R2/R1)| = 4/2 = 2.

2

Let
1 = G0 < G1 < ... < Gn = G

be a supersoluble series of G. For 0 < i < n we have a normal series

1 = Gi−1/Gi−1 < Gi/Gi−1 < Gi+1/Gi−1 < G/Gi−1

on which we can apply 2.2. Informally the result says that given neighbouring
factors in a supersoluble series, to produce a new supersoluble series we can

(a) shift a factor of prime order q to the right of a factor of prime order p
provided that p > q;

(b) shift a factor of infinite order to the right of a factor of odd prime order p
possibly at the expense of losing the factor of order p;

(c) shift a factor of order 2 to the right of an infinite factor at the expense of
inserting another factor of order 2 to the right of the infinite factor.

We are now in a situation to give our first canonical form.

Theorem 2.3 (Zappa) A supersoluble group G has a supersoluble series in
which the cyclic factors have infinite or prime order and the order of the factors
from the left is:

• factors of odd magnitude in descending order of magnitude;
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• infinite factors;

• factors of order 2.

Proof: Using 1.5(a), G has a supersoluble series whose factors have infinite
or prime order. By the previous discussion we can use 2.2 to get the required
supersoluble series. Using 2.2(a) and 2.2(c) we can produce a supersoluble series
whose factors of order 2 are last. Then by 2.2(b) we can get a supersoluble series
whose factors of order 2 are last, preceded by its infinite factors. Finally, one
can use 2.2(a) to order the factors of odd prime order. 2

Corollary 2.4 The elements of odd order in a supersoluble group form a char-
acteristic subgroup.

Proof: Choose a supersoluble series of G as in 2.3, say

1 = G0 < G1 < ... < Gr < Gr+1 < ... < G

where Gr+1/Gr is the first infinite factor. Then clearly Gr is a subgroup of
G consisting precisely of the elements of odd order in G. Automorphisms take
elements of odd order to elements of odd order. The result follows. 2

Since a finite supersoluble group has Hirsch number 0, we have:

Corollary 2.5 If G is a finite supersoluble group then G has a supersoluble
series

1 = G0 < G1 < ... < Gn = G

with each |Gi/Gi−1| prime and |G1/G0| ≥ |G2/G1| ≥ ... ≥ |Gn/Gn−1|. 2

We now give some examples to illustrate why 2.2 is, in some sense, the best
possible result we can hope for.

(i) We cannot necessarily produce a supersoluble series of a group in which
the finite factors are in ascending order of magnitude. This is because we
cannot always shift a factor of prime order q to the right of a factor of
prime order p when q > p. To see this, note that Sym(3) has a unique
supersoluble series 1 ≤< (123) >≤ Sym(3) with factors from left to right
C3, C2 so that there is not a supersoluble series of Sym(3) whose factors
are in ascending order of magnitude.

(ii) We cannot necessarily move a factor of order 2 to the left of an infinite
factor. An example can be found by looking at the infinite dihedral group
D∞ =< x, y : x2 = 1, yx = y−1 >, of the form Z]C2. One can show that
D∞ has no normal subgroups of order 2 and thus has no supersoluble
series whose factors from left to right are C2 then Z.

(iii) One cannot necessarily shift a factor of odd prime order p to the right
of an infinite factor without introducing another finite factor of order not
p. For example, consider the group G with presentation < x, y : x3 =
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1, xy = x−1 >. It is easy to show that this group is a semi-direct product
< x >] < y > - i.e. of the form C3]Z. Furthermore, the infinite elements
of G have one of the forms yi, xyi, x2yi (where i ∈ Z). It is fairly routine
to show that for z an element of infinite order in G, < z > �G if and
only if z = y2i for i an integer. It follows that the normal infinite cyclic
subgroup of G of smallest index is < y2 > which has index 6. It follows
also that a supersoluble series of G with an infinite factor first must have
some factor isomorphic to C2.

We do have a method of “moving” infinite factors to the left of a finite factor
by means of a more general result.

2.6 The Second Rearrangement Lemma. If 1 < H < K < G is a normal series
of G with H finite and K/H infinite cyclic, then there is a normal subgroup R
of G contained in K such that R is infinite cyclic and K/R is finite.

Proof: H is a normal subgroup of K, so that K/CK(H) = NK(H)/CK(H)
can be embedded into AutH. Since H is a finite group, AutH is finite. Thus
K/CK(H) is finite. And 1 < ζ1H ≤ CK(H) ≤ K. So we may as well assume
that K centralizes H so that 1 < H ≤ ζ1K ≤ K. Since K/H is cyclic, K/ζ1K
is cyclic and thus K is abelian. So consider the normal series 1 < H ≤ K ≤ G
with K abelian.

We have K/H generated by some element Hx where x ∈ K has infinite
order. Thus K = H < x >. K is abelian, so [H,x] = 1 and H is finite so
H∩ < x >= 1. Thus K = H× < x >. Let n = |H|. Take R = Kn . Since
Hn = 1, we have R =< xn >. Then R is infinite cyclic. Since (xg)n = (xn)g

for every g ∈ G, it follows that R is a normal subgroup of G. Finally,

|K/R| = |H < x > / < xn > | = |H|n = n2.

Thus |K/R| is finite as required. 2

Theorem 2.7 If G is a supersoluble group then it has a supersoluble series with
the infinite factors appearing first.

Proof: By 2.1, we can induct on the Hirsch number m of a supersoluble group
G. If m = 0 then any supersoluble series of G satisfies the required property.
Suppose that m > 0 and that for supersoluble groups of Hirsch number m − 1
the result holds. Let

1 = G0 < G1 < ... < Gn = G

be a proper supersoluble series of G. Choose r to be the smallest integer such
that Gr/Gr−1 is infinite cyclic. Clearly r > 0.

If r = 1 then G/G1 is a supersoluble group with Hirsch number m− 1. By
induction, there is a supersoluble series

G1/G1 = H1/G1 < H2/G1 < ... < Hs/G1 = G/G1
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with the infinite factors appearing first. Then

1 = G0 < G1 = H1 < H2 < ... < Hs = G

is a supersoluble series of G with the infinite factors appearing first.
If r > 1 apply 2.6 to the normal series

1 < Gr−1 < Gr < G

to obtain a normal subgroup R of G contained in Gr such that R is infinite cyclic
and Gr/R is finite. G/R is therefore a supersoluble group with Hirsch number
m− 1, so by induction there is a supersoluble series of G/R and thus there is a
normal series of G with cyclic factors between R and G with the infinite factors
first. This series, together with 1 and R, gives a supersoluble series of G with
the infinite factors first. 2

Corollary 2.8 (a) A supersoluble group has a normal poly-(infinite cyclic)
subgroup of finite index.

(b) An infinite supersoluble group has a non-trivial torsion-free abelian normal
subgroup.

Proof: (a) follows directly from 2.7. To show (b), let L be a normal poly-
(infinite cyclic) subgroup of supersoluble G, as in (a). Then L is certainly
soluble. Let T be the last non-trivial term in the derived series of L. T is an
abelian group, it is torsion-free and is finitely generated. It is characteristic in
L and so is normal in G. 2

More generally, polycyclic-by-finite groups always have a polycyclic-by-finite
series in which the infinite cyclic factors appear first and therefore has a poly-
(infinite cyclic) subgroup of finite index. The proof of 2.8(b) also generalizes so
that an infinite polycyclic-by-finite group have a non-trivial torsion-free abelian
normal subgroup.

Corollary 2.9 If G is a supersoluble group then G has a supersoluble series
in which each factor is infinite cyclic or cyclic of prime order, and such that
the infinite factors appear first, then the finite factors in descending order of
magnitude.

Proof: By 2.7, G has a supersoluble series

1 = G0 < G1 < ... < Gn = G

with the infinite factors first. Let r be the largest integer such that Gr/Gr−1

is infinite cyclic. Then G/Gr is a finite group. By 2.5, there is a supersoluble
series

Gr/Gr = Hr+1/Gr < Hr+2/Gr < ... < Hr+s/Gr = G/Gr

with the factors of prime order and in descending order of magnitude. Then:

1 = G0 < G1 < ... < Gr = Hr+1 < Hr+2 < ... < Hr+s = G
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is a supersoluble series of G. The condition on the finite factors holds because

|Hr+i/Hr+i−1| = |(Hr+i/Gr)/(Hr+i−1/Gr)|

for i = 1, 2, ..., s. 2

As we have seen, some of the results of this section hold more generally for
polycyclic-by-finite groups and polycyclic-by-finite series. We end this section
by showing that 2.3, 2.4, 2.5 and 2.9 do not generalize. For counterexamples we
rely on our standard example of a polycyclic group which is not supersoluble,
Alt(4).

Alt(4) has only one proper non-trivial normal subgroup V and Alt(4)/V ∼=
C3. V has three elements of order 2 and so it follows that Alt(4) has only 3
polycyclic series, all of whose factors from left to right are (up to isomorphism)
C2, C2 and C3. We list these:

1 ≤< (12)(34) >≤ V ≤ Alt(4)

1 ≤< (13)(24) >≤ V ≤ Alt(4)

1 ≤< (14)(23) >≤ V ≤ Alt(4)

Clearly Alt(4) has no polycyclic series with the factors in descending order
of magnitude. Also the elements of odd order in Alt(4) don’t form a subgroup;
for example, (123)(234) = (13)(24) which has even order. This kills any hope of
the aforementioned results being true for polycyclic groups and thus any hope
of them being true for polycyclic-by-finite groups.
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Chapter 3

Sylow Towers and a
Theorem of Philip Hall

Throughout this chapter, all groups will be finite.

Definition. Let p1, ..., pr be the distinct prime divisors of |G|. A Sylow tower
of complexion (p1, ..., pr) of G is a sequence of subgroups of G1, ..., Gr of G such
that Gi is a Sylow pi-subgroup of G for each i = 1, ..., r and G1G2...Gk �G for
each k = 1, ..., r. Note that given such subgroups G1, ..., Gr, G1G2...Gr has the
order of G and thus must be G itself.

If the prime divisors are ordered so that p1 > p2 > ... > pr, then we shall
call a Sylow tower of complexion (p1, ..., pr) of G just a Sylow tower of G.

Proposition 3.1 Every supersoluble group has a Sylow tower.

Proof: Let G be supersoluble. We induct on the number of prime divisors of
|G|. If G is trivial then the result clearly holds. So assume that G is non-trivial.

Let p = p1 > p2 > ... > pr be the distinct prime divisors of |G|. Clearly,
a supersoluble series of G whose factors have prime order must include some
factor of order p. By 2.5, there is a supersoluble series of G in which the factors
of order p appear first, say

1 = G0 < G1 < ... < Gn = G.

If r is chosen maximal to the condition that |Gr/Gr−1| = p then Gr is a normal
subgroup of G of order pr. Furthermore, any prime dividing (G : Gr) is strictly
less than p. Thus S = Gr is a normal Sylow p-subgroup of G.

By induction, G/S has a Sylow tower (of complexion (p2, ..., pr)), say

T2/S, ..., Tr/S.

Note that T2, T2T3, ..., T2T3...Tr are all normal subgroups of G. For i = 2, ..., r,
let Si be a Sylow pi-subgroup of Ti and S1 = S. Since |Ti| = |S|pei , where pei
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is the power of pi dividing |G|, it follows that each Si is a Sylow pi-subgroup of
G. And further S1 �G (trivially), S1S2 = T2 �G, ..., S1S2...Sr = T2...Tr �G.
Thus G has a Sylow tower. 2

Corollary 3.2 (a) If G is a supersoluble group and p is the largest prime
dividing |G| then G has a normal Sylow p-subgroup S. Further, S has a
complement in G.

(b) If G is a supersoluble group and p is the smallest prime dividing |G| then
a Sylow p-subgroup P of G has a normal complement in G.

Proof: By 3.1, G has a Sylow tower, say G1, G2, ..., Gr. To prove (a), take
S = G1 �G. For then, since (G : S) and |S| are coprime, the Schur-Zassenhaus
Theorem says that S has a complement in G. To prove (b), take P = Gr and
Q = G1...Gr−1 � G. Since the orders of G1, ..., Gr−1 and the order of Gr are
coprime, it follows from Lagrange’s Theorem that Q∩P = 1. Clearly QP = G,
so Q is a complement of P in G. Q is normal in G so that it is a normal
complement of P in G. 2

If G has a Sylow tower then it is not necessarily supersoluble. For example,
Alt(4) has Sylow tower V,< (123) >. There is a property which in addition to
a group having a Sylow tower, characterizes (finite) supersoluble groups. We
state the relevant Theorem but do not prove it (see [16] Theorem 1.12, page 6)

Definition. Let p be a prime. A group K is called strictly p-closed if K has a
unique (and thus normal) Sylow p-subgroup T and K/T is abelian of exponent
dividing p− 1. We shall see later that a strictly p-closed group, for some prime
p, is supersoluble.

Theorem 3.3 (Baer). G is supersoluble if and only if

(a) G has a Sylow tower.

(b) Given any prime p and any Sylow p-subgroup S of G, NG(S)/CG(S) is
strictly p-closed.

Definition. Let π be a set of prime numbers. Let π′ denote the set of all primes
that do not occur in π. A π-number is a number divisible only by primes in
π. A π-group (resp. π-subgroup) is a group (resp. subgroup) whose order is a
π-number. A Hall π-subgroup of G is a π-subgroup H of G such that (G : H)
is a π′-number. Note that if π = {p}, p a prime then a π-group is precisely a
p-group and a Hall π-subgroup is precisely a Sylow p-subgroup; so these notions
generalize the notion of a Sylow p-subgroup.

Sylow’s Theorem establishes the conjugacy (and hence isomorphism) of the
Sylow p-subgroups of a group G. Much research has been done into the conju-
gacy of other ”special” subgroups, such as Hall π-subgroups. The main theorem
of this section is a result regarding these.

Theorem 3.4 (P. Hall [5]) Let G be a group. Any two supersoluble Hall π-
subgroups of G are conjugate in G.
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This follows from a more general result:

Theorem 3.5 (P. Hall [5]) Let G be a group and π be a set of primes. Let
p1, ..., pr be the distinct primes in π that divide |G|. Let H, K be Hall p-
subgroups of G both with Sylow towers of complexion (p1, ..., pr). Then H and
K are conjugate in G.

Proof: Let S1, ..., Sr and T1, ..., Tr be Sylow towers of complexion (p1, ..., pr)
for H and K respectively. We induct on r. If r = 1 then H and K are Sylow
p1-subgroups of G and are conjugate by Sylow’s Theorem. Assume that r > 1
and put H1 = S1S2...Sr−1 and K1 = T1T2...Tr−1. By definition of Sylow tower,
H1 is a normal subgroup of H and K1 is a normal subgroup of K. Also H1 and
K1 have Sylow towers of complexion (p1, ..., pr−1) and are Hall {p1, ..., pr−1}-
subgroups of G. Hence by induction H1 and K1 are conjugate. Thus without
loss of generality we may assume that H1 = K1, replacing K and the Ti’s by
conjugates if necessary (anything conjugate to this “new” K will be conjugate
to the “old” K since conjugacy is a transitive relation). Let per be the highest
power of pr dividing G. Since the subgroups S1, ..., Sr−1 have orders which do
not involve the prime pr, S1S2...Sr−1∩Sr = 1 using Lagrange’s Theorem. Then

|H/H1| = |S1S2...Sr/S1...Sr−1| = |Sr|

By using an Isomorphism Theorem, |Sr| = per. In a similar way, |K/H1| = per.
H1 is normal in both H and K so that H and K are contained in NG(H1).
It follows that H/H1 and K/H1 are Sylow pr-subgroups of NG(H1)/H1. By
Sylow’s Theorem there is g ∈ NG(H1) such that Hg/H1 = K/H1 and thus
Hg = K, as required. 2

Proof of 3.4: Let p1, ..., pr be the distinct primes in π that divide |G| and
choose them so that p1 > p2 > ... > pr. The distinct primes dividing |H| and |K|
are amongst p1, ..., pr. Thus, 3.1 yields Sylow towers of complexion (p1, ..., pr)
for both H and K. By 3.5, H and K are conjugate. (One should note that if
p, a prime, does not divide |J |, for a group J , then a Sylow p-subgroup of J is
trivial.) 2
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Chapter 4

Some Characterization
Theorems for finite
Supersoluble groups

Throughout this chapter, all groups will be finite.

If G is an abelian group then for any divisor n of |G| there is a subgroup H of
G for which |H| = n. Of course, in this case any subgroup of G is normal.

It is fairly straightforward to show that a group G is nilpotent if and only
if for every divisor n of |G| there is a normal subgroup N of G with |N | = n.
This is the content of a short paper by C. V. Holmes ([6]).

We now present a similar characterization for supersoluble groups, giving a
similar proof to one of W. E. Deskins’ ([3]).

Definition. We shall say that G satisfies (or is) clt if it satisfies the converse of
Lagrange’s Theorem. That is to say that G satisfies clt if whenever n divides
|G|, G has a subgroup of order n.

Alt(4) does not satisfy clt because it has no subgroup of order 6. Sym(4)
does satisfy clt:

Order 1 2 3 4 6 8 12 24
Subgroup 1 C2 C3 V Sym(3) D8 Alt(4) Sym(4)

(up to isomorphism)

Sym(4) contains Alt(4), and so we note that a subgroup of a clt group is not
necessarily clt.

One can show that every clt group is necessarily soluble (see for example
[16] Theorem 1.4, page 71). We will show that every supersoluble group is clt.
Since any subgroup of a supersoluble group G is supersoluble, every subgroup
of G must be clt. It turns out that this last property is a sufficient condition for
supersolubility.
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Lemma 4.1 The following conditions are equivalent.

(a) Every subgroup of G satisfies clt.

(b) If H ≤ G then for every prime divisor p of |H|, there is a subgroup K ≤ H
with (H : K) = p.

Proof: (a)⇒ (b) If p is a prime dividing |H| then |H|/p is an integer dividing
|H|. By hypothesis, there is a subgroup K of H whose order is |H|/p and hence
has index p in H.

(b) ⇒ (a) Suppose n divides |H|, where H ≤ G. Then |H| = nm for
some integer m. Let p1...pr be a prime factorization of m. Then p1 divides
|H|, so by hypothesis H has a subgroup H1 of index p1 in H. Noting that
|H1| = np2...pr, p2 divides |H1|, so by hypothesis, H1 contains a subgroup H2

of index p2. Continuing this way, we see that for i = 2, ..., r, there is a subgroup
Hi of index pi in Hi−1. Furthermore,

|Hr| = |H|/(H : Hr) = |H|/((H : H1)(H1 : H2)...(Hr−1 : Hr))

= nm/(p1p2...pr) = nm/m = n.

Thus Hr is the desired subgroup. 2

Theorem 4.2 A group G is supersoluble if and only if every subgroup of G
satisfies clt.

By 4.1 it suffices to prove:

Theorem 4.3 A group G is supersoluble if and only if for every subgroup H of
G, H has a subgroup of index p for every prime p dividing |H|.

Proof: ⇒ We shall use induction on |G|, G a supersoluble group. If H < G
then H is supersoluble and by induction contains a subgroup of prime index q
in H, for every prime q dividing |H|. It therefore remains to show that if q is a
prime divisor of |G| then G possesses a subgroup of index q.

Let p be the largest prime dividing |G| . By 3.2(a) a Sylow p-subgroup S of
G is normal in G and there is a complement T of S in G.

If
1 = G0 ≤ G1 ≤ ... ≤ Ga = G

is any supersoluble series of G, set Si = Gi ∩ S and take a supersoluble series

S/S = Sa/S ≤ Sa+1/S ≤ ... ≤ Sa+b/S = G/S

of G/S. Then
1 = S0 ≤ S1 ≤ ... ≤ Sa+b = G

is a supersoluble series of G containing S as a term. Since we can refine this to
a supersoluble series of G with factors of prime order (as in the proof of 1.5(a))
and S is a p-group, we can choose P < G such that P ≤ S and (S : P ) = p.
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We have q ≤ p. If q < p then consider the quotient G/S. G/S is supersoluble
and |G/S| < |G|. Thus by induction there is a subgroup K/S of G/S of index
q. But then K is a subgroup of G with (G : K) = (G/S : K/S) = q. In this
case, K is the required subgroup.

Assume therefore that q = p. Set M = PT . Now P ∩ T ≤ S ∩ T = 1. So

|M | = |PT | = |P ||T |/|P ∩ T | = |P ||T |.

And |G| = |ST | = |S||T |. Thus we have

(G : M) = |S||T |/|P ||T | = |S|/|P | = (S : P ) = p,= q.

So in this situation, M is the required subgroup.
⇒ We again use induction. Let q be the smallest prime dividing |G| . By

assumption there is a subgroup K of G with (G : K) = q. Since q is the smallest
prime dividing G we have K �G, by 0.1(b). By induction, K is supersoluble.

We may assume that K is non-trivial; otherwise G has order q, is cyclic and
so supersoluble. Let p be the largest prime dividing |K|. Using 3.2, let S be the
normal Sylow p-subgroup of K. Since it is unique, it is characteristic in K and
thus normal in G.

We have p ≥ q. If p = q then G must be a p-group; for q is the smallest
prime dividing |G|, so the only prime dividing |K| is p = q and (G : K) = q.
Thus G is supersoluble.

If p > q then as p does not divide (G : K), S is a Sylow p-subgroup of G.
ζ1S is a non-trivial normal subgroup of G (S is a non-trivial p-group and ζ1S
is characteristic in S). Thus we can choose a minimal subgroup N of G which
lies inside ζ1S.

We claim that

(a) |N | = p. In particular, we claim that N is a cyclic normal subgroup;

(b) G/N is supersoluble.

By hypothesis, G contains a subgroup M of index p. M must be a maximal
subgroup of G. By the maximality of M , MN = M or MN = G.

Suppose MN = G. Since N is abelian, we have M ∩N �N . As N �G we
have M ∩N �M . Thus M,N ≤ NG(M ∩N). Hence M ∩N �MN = G. Also
M ∩ N ≤ N , so the minimality of N gives M ∩ N = N or 1. If M ∩ N = N
then

|G| = |MN | = |M ||N |/|M ∩N | = |M |,

contradiction. So M ∩N = 1. Thus we have

|N | = |MN |/|M | = (G : M) = p.

If MN = M then N ≤ M . M is supersoluble by induction, so we know
that N must contain a subgroup N1 of order p which is normal in M . Then
M ≤ NG(N1) and since N1 ≤ N ≤ ζ1S, S centralizes N1, so in particular, S
normalizes N1. S is not contained in M , so the maximality of M gives SM = G.
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Thus G = NG(N1), or in other words we have N1 ≤ G. Using the minimality of
N , N = N1. Thus |N | = p. We have therefore proved claim (a), in either case.

Let H/N < G/N . By induction, H is supersoluble and so H/N is super-
soluble. By the necessity argument above, H/N contains a subgroup of prime
index r for each prime divisor r of |H/N |.

If r is a prime dividing |G/N | then r divides |G| . Thus G contains a
subgroup R such that (G : R) = r. If N ≤ R then R/N is a subgroup of G/N
with

(G/N : R/N) = (G : R) = r.

In this case, by induction G/N is supersoluble, establishing (b).
We now consider the case where N is not contained in R. Since N is cyclic

of prime order and N is not contained in R we have N ∩ R = 1. (G : R) is
prime, so R is a maximal subgroup of G. R < RN , so that G = RN . Then

G/N = RN/N ∼= R/R ∩N ∼= R,< G.

R is supersoluble by induction and so G/N is supersoluble, again giving (b).
(a) and (b) yield that G is cyclic-by-supersoluble and so supersoluble, by

1.2. 2

In chapter 1 we showed that a (not necessarily finite) supersoluble group
had maximal subgroups (1.7) and that they each have prime index (1.9). The
latter property provides a characterization of finite supersoluble groups and this
was shown by Huppert. There are several proofs of this result. Some of these
use results from representation theory which we wish to avoid. For alternative
proofs to the on we give here, see either [4] 10.5.8 or [10] 9.4.4. We prove some
auxilary results.

Proposition 4.4 If G is strictly p-closed for some prime p, then G is super-
soluble.

Before proving 4.4, we note that G does not have to be strictly p-closed for
every prime p, to be supersoluble. For example, Sym(3) is supersoluble and
is strictly 3-closed but not strictly 2-closed (it does not have a normal Sylow
2-subgroup).

Proof: We proceed by induction on |G|. Let S be a Sylow p-subgroup of G, p
being some prime for which G is strictly p-closed. If S = 1 then G ∼= G/S is
abelian (of exponent dividing p − 1) and thus is supersoluble. So consider the
case where S 6= 1.

Set Z = ζ1S. Since S is a p-group, we have Z 6= 1. Also Z is normal in
G. Thus Z contains a minimal normal subgroup N of G. S ≤ CG(N), since
N ≤ Z.

N is an elementary abelian p-group by 0.10(a). Since G/S is abelian of
exponent dividing p− 1, G/CG(N) ∼= (G/S)/(CG(N)/S) is abelian of exponent
dividing p − 1. By 0.5(b), N is cyclic of order p. Then G/N has order less
than that of G. S/N has order pr−1, where pr = |S|. So S/N is the Sylow p-
subgroup of G/N (S/N�G/N since S�G), and (G/N)/(S/N) ∼= G/S is abelian
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of exponent dividing p− 1. Thus G/N is strictly p-closed. By induction, G/N
is supersoluble. Thus G is cyclic-by-supersoluble and therefore supersoluble, by
1.2. 2

Before proving Huppert’s Theorem, we note an interesting corollary of 4.4:

Corollary 4.5 If G has order qpr where p and q are primes with q dividing
p−1, then G is supersoluble. In particular, a group of order 2pr is supersoluble.

Proof: Using Sylow’s Theorem, if S is a Sylow p-subgroup of G then it must be
unique, since the number of Sylow q-subgroups is congruent to 1 mod p, must
divide q, which divides p− 1. Hence S�G. The order of G/S is q, so that G/S
is abelian (it is cyclic) of exponent dividing p− 1. By 4.4, G is supersoluble. 2

Theorem 4.6 (Huppert c1954) If the maximal subgroups of G all have prime
index then G is supersoluble.

Proof: We first show that G is soluble1. Choose p to be the largest prime
divisor of |G|. Let S be a Sylow p-subgroup of G. S is nilpotent and so soluble.
Suppose that S is not normal in G. Then NG(S) is contained in a maximal
subgroup M of G. (G : NG(S)) is coprime to p (it divides (G : S)) and
(G : M) divides (G : NG(S)). Thus (G : M) is coprime to p, or in other words,
(G : M) = 1 mod p. But (G : M) = q is prime. By choice of p, we must have
p > q,> 1. But then (G : M) 6= 1 mod p. This is a contradiction. So S �G.

Now M/S is a maximal subgroup of G/S if and only if M is a maximal
subgroup of G and M contains S. Moreover, (G/S : M/S) = (G : M) is prime.
So G/S satisfies the hypothesis. Since |G/S| < |G|, G/S is soluble by induction.
Thus G is soluble-by-soluble and hence soluble.

We now show that G is supersoluble. Choose a minimal normal subgroup H
of G. In a similar way to above, G/H satisfies the hypothesis of the Theorem
and |G/H| < |G|, so that by induction G/H is supersoluble. If K is a minimal
normal subgroup of G that is different from H, then also G/K is supersoluble
by induction. Further H ∩K �G and H ∩K �K. Thus, by the minimality of
K, we have H ∩K = 1. Then G ∼= G/H ∩K which is supersoluble by 1.4(b).
Therefore we may assume that H is the unique minimal normal subgroup of G.

The solubility of G ensures that H is an elementary abelian p-group by
0.10(a). Then H is a normal nilpotent subgroup of G and so it is contained in
the Fitting subgroup η1G. If q is a prime dividing |η1G| and q 6= p, then let Q be
a Sylow q-subgroup of η1G. The nilpotency of η1G yields that Q is the unique
Sylow q-subgroup of η1G. Thus Q is characteristic in η1G and hence normal in
G. But then G has a normal q-subgroup. Thus is must have a minimal normal
subgroup that is a q-group. This contradicts the uniqueness of H. Thus we
assume that η1G is a p-group.

If H is not contained in the Frattini subgroup ΦG, then there is a maximal
subgroup M of G such that H is not contained in M . The maximality of M

1In this step we prove a special case of a theorem of Philip Hall, namely: If all the maximal
subgroups of finite G have prime or square of a prime index, then G is soluble.
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yields HM = G, since M �HM . M ∩H �H since H is abelian, and H �G so
that M∩H�M . Thus H and M normalize M∩H and hence M∩H�HM = G.
But M ∩H �H. Thus, by the minimality of H, M ∩H = 1. Then

(G : M) = (HM : M) = (H : H ∩M) = (H : 1) = |H|.

Thus H must be cyclic. But then H is cyclic-by-supersoluble and hence super-
soluble by 1.2. So we assume that H ≤ ΦG.

Since H is non-trivial, so is ΦG. It follows that by induction G/ΦG is su-
persoluble. By 0.9(c) η1(G/ΦG) = η1G/ΦG. Thus η1(G/ΦG) is a p-group.
By 1.10(a), (G/ΦG)/η1(G/ΦG) is abelian. Since η1(G/ΦG) is a p-group, any
chief factor of G/ΦG of order coprime to p is centralized by G/ΦG. This fact,
together with 0.9(d), yields that η1(G/ΦG) is the intersection of the centraliz-
ers in G/ΦG of chief factors of G/ΦG whose order is p. If C is one of these
centralizers, by 0.3 and 0.5(a) (G/ΦG)/C is abelian of exponent dividing p− 1.
It follows that

G/η1G ∼= (G/ΦG)/(η1G/ΦG) = (G/ΦG)/η1(G/ΦG)

is abelian of exponent dividing p− 1.
Since η1G is a p-group, it is contained in a Sylow p-subgroup S of G. Thus

G′ ≤ η1G ≤ S. Therefore S �G. And

G/S ∼= (G/η1G)/(S/η1G).

Thus G/S is abelian of exponent dividing p − 1. Hence G is strictly p-closed
and so by 4.4, G is supersoluble. 2

Corollary 4.7 (a) G is supersoluble if and only if every maximal subgroup of
G has prime index.

(b) If N � G and N is contained in every maximal subgroup of G then G is
supersoluble if and only if G/N is supersoluble.

(c) If L � G then G is supersoluble if and only if G/ΦL is supersoluble. In
particular, G is supersoluble if and only if G/ΦG is supersoluble.

Proof: (a) This is the union of results 4.6 and 1.9.
(b) Suppose that G/N is supersoluble. Let M be a maximal subgroup of G.

By hypothesis, N is contained in M . M/N is a maximal subgroup of G/N . By
(a), (G : M) = (G/N : M/N) is prime. Thus by (a) again G is supersoluble.

(c) If L�G then ΦL ≤ ΦG by 0.9(b), and ΦG is contained in every maximal
subgroup of G, by definition. ΦL is characteristic in L and thus is normal in G.
(c) then follows from (b) by taking N = ΦL. 2

The next result due to Kramer involves maximal subgroups and the Fitting
subgroup.

Theorem 4.8 (Kramer c1976) Let G be soluble. Then G is supersoluble if and
only if for every maximal subgroup M of G, either η1G ≤ M or M ∩ η1G is a
maximal subgroup of η1G.
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Note that the solubility of G is required in Kramer’s Theorem. Alt(5) is
an insoluble simple group. Since the Fitting subgroup is a normal nilpotent
subgroup, we must have η1(Alt(5)) = 1. Thus η1(Alt(5)) is contained in every
subgroup of Alt(5) and so in particular, in every maximal subgroup. It is clear
also that Alt(5) is not supersoluble.

Proof: ⇒ Assume that G is supersoluble. By 1.9, if M is a maximal subgroup
of G then (G : M) is prime. If the Fitting subgroup η1G is not contained in
M , then since M < Mη1G, the maximality of M ensures that G = Mη1G. But
then

(η1G : η1G ∩M) = (Mη1G : M) = (G : M).

Thus (η1G : η1G ∩M) is prime so that η1G ∩M must be a maximal subgroup
of η1G.
⇐ If M/ΦG is a maximal subgroup of G/ΦG then M is a maximal subgroup

of G. Thus M ≥ η1G or M ∩η1G is a maximal subgroup of η1G. But by 0.9(c),
η1G/ΦG = η1(G/ΦG). Thus M/ΦG ≥ η1(G/ΦG) or

(M ∩ η1G)/ΦG = (M/ΦG) ∩ (η1G/ΦG) = (M/ΦG) ∩ η1(G/ΦG)

is a maximal subgroup of η1(G/ΦG). Thus the hypothesis is also satisfied by
G/ΦG. Hence if ΦG 6= 1, by induction G/ΦG is supersoluble and then by 4.7(c)
G is supersoluble. Thus assume that ΦG = 1.

By 0.10(b) η1G is abelian and is the direct product of (abelian) minimal
normal subgroups of G, say

η1G = H1 ×H2 × ...×Hr.

As ΦG = 1, for each i = 1, 2, ..., r there is a maximal subgroup Mi of G such
that Hi is not contained in Mi. Mi < MiHi , so that the maximality of Mi

gives us that MiHi = G. Since Hi is abelian and since Hi �G, it follows that
Mi ∩Hi �MiHi = G. The minimality of Hi yields that Mi ∩Hi = 1, for each
i = 1, ..., r.

Also for each i = 1, ..., r, we have

η1G = G ∩ η1G = HiMi ∩ η1G = Hi(Mi ∩ η1G),

using the Modular law. If η1G ≤ Mi then Hi ≤ Mi, contradiction. Thus by
hypothesisMi∩η1Gmust be a maximal subgroup ofM . By 1.9, (η1G : Mi∩η1G)
is prime. Then we have

|Hi| = (Hi : Mi ∩Hi) = (HiMi : Mi) = (G : Mi)

= ((η1G)Mi : Mi) = (η1G : Mi ∩ η1G).

Thus |Hi| is prime. Hence by 0.3 and 0.5, G/CG(Hi) is abelian. Therefore,
we have G′ ≤ CG(Hi). Thus

G′ ≤
⋂

i=1,...,r

CG(Hi) = CG(η1G),≤ η1G
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by 0.10(c).
Now let M be a maximal subgroup of G. Then either η1G ≤M or Mη1G =

G. If η1G ≤ M , then G′ ≤ M . Thus M � G and G/M is an abelian simple
group. Hence (G : M) is prime. If Mη1G = G then

(G : M) = (Mη1G : M) = (η1G : M ∩ η1G)

which is prime by 1.9. Thus in all cases, (G : M) is prime. By Huppert’s
Theorem (4.6), G is supersoluble. 2

Corollary 4.9 Let G be soluble. Then G is supersoluble if and only if for every
maximal subgroup M of G and each N �G, either M contains N or M ∩N is
a maximal subgroup of N .

Proof: Let M be a maximal subgroup of supersoluble group G. If N is not
contained in M then the maximality of M yields MN = G. Therefore (G :
M) = (MN : M) = (N : M ∩N) is prime by 4.7(a). Thus M ∩N is a maximal
subgroup of N .

For the converse, suppose that for every maximal subgroup M of G and
every N �G, either M contains N or M ∩N is a maximal subgroup of N . In
particular, this must hold for the normal subgroup η1G. By Kramer’s Theorem
(4.8), G is supersoluble. 2

Definition. A maximal subgroup chain is a sequence of subgroups2 of G

1 = G0 < G1 < ... < Gn = G

where Gi−1 is a maximal subgroup of Gi for i = 1, ..., n. Equivalently, a maximal
subgroup chain of G is a sequence of subgroups with no proper refinements.
Note that a composition series of a soluble group is an example of a maximal
subgroup chain.

G is called equichained if all maximal subgroup chains of G have the same
length.

Let
1 = H0 < H1 < ... < Hn = H

and
1 = J0 < J1 < ... < Jm = H

be maximal subgroup chains of H, a subgroup of an equichained group G, then
since G is finite, we can complete these chains to maximal subgroup chains of
G, say:

1 = H0 < H1 < ... < Hn = H < L1 < ... < Ls = G

and
1 = J0 < J1 < ... < Jm = H < L1 < ... < Ls = G.

2WARNING: We do not require this sequence to be a series of G; i.e. we do not require
each Gi−1 �Gi.
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Since G is equichained, we have n + s = m + s and hence n = m. Thus H is
equichained. We have therefore shown that a subgroup of an equichained group
is equichained.

We now aim to show that an equichained group is supersoluble and con-
versely. This was discovered by Iwasawa. The proof requires some auxilary
results.

Definition. If p is a prime, G is p-normal if whenever S and T are Sylow
p-subgroups with ζ1S ≤ T then ζ1S = ζ1T .

Lemma 4.10 If G is not p-normal then the centre of a Sylow p-subgroup is
always nonnormal in some other Sylow p-subgroup.

Proof: By negating the definition of p-normal, there exist Sylow p-subgroups S,
T such that ζ1S 6= ζ1T , but ζ1S ≤ T . Suppose for a contradiction that ζ1S < T .
Then both S and T normalize ζ1S and then both S and T are Sylow p-subgroups
of NG(ζ1S). By Sylow’s Theorem, there is g ∈ NG(ζ1S) with Sg = T . But then
ζ1S = (ζ1S)g = ζ1(Sg) = ζ1T . This is a contradiction. Thus ζ1S cannot be
normal in T . 2

We state but do not prove the following two results - their proofs would be
out of context here.

Theorem 4.11 (Grün) Let G be a p-normal group and S be a Sylow p-subgroup
of G. The largest abelian p-group which occurs as a factor group of G is isomor-
phic to the largest abelian p-group which occurs as a factor group of NG(ζ1S).

Proof: This can be found in [13] 13.5.4. 2

Theorem 4.12 (Burnside) Let p be a prime, H a p-subgroup of G such that H
is normal in some Sylow p-subgroup of G but is nonnormal in some other Sylow
p-subgroup of G. Then there is a p-subgroup L of G such that NG(L)/CG(L) is
not a p-group.

Proof: This is a reformulation part of Theorem IV.2.u in [12]. 2

The next result, which is essential in the development we have chosen to
follow of Iwasawa’s Theorem, is of independent interest.

Theorem 4.13 (Huppert c1954) Suppose G is a group whose proper subgroups
are supersoluble. Then G is soluble.

Proof: We induct on the order of G, noting that the result is vacuous for
trivial groups. So assume that G is non-trivial and every proper subgroup of
G is supersoluble. Every proper subgroup of every proper factor group of G is
supersoluble so that by induction every proper factor group is soluble. Thus
if we can show that G is not simple, G will be the extension of a supersoluble
group by a soluble group and thus will be soluble.

Suppose p is the smallest prime dividing |G|. If G is a p-group then G is
nilpotent and hence soluble, so suppose that G is not a p-group.
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Let L be a non-trivial p-subgroup of G. If L �G then G is not simple and
we have finished, so suppose that NG(L) < G. Then NG(L) is supersoluble. By
3.1 NG(L) has a Sylow tower. Using 3.2(b), let R be a normal complement in
NG(L) to any Sylow p-subgroup of NG(L). R,L are both normal subgroups of
NG(L), so [R,L] ≤ R ∩ L . R ∩ L = 1 by Lagrange’s Theorem, because p does
not divide |R| and L is a p-group. Thus R ≤ CG(L). NG(L)/R is a p-group
and hence

NG(L)/CG(L) ∼= (NG(L)/R)/(CG(L)/R)

is a p-group. By 4.12 there can be no p-subgroup of H of G that is normal
in one Sylow p-subgroup but is nonnormal in some other. By 4.10, G must be
p-normal.

Let P be a Sylow p-subgroup of G. In a similar way to above we can assume
that NG(ζ1P ) is a proper subgroup G and hence is supersoluble. Note that since
P ≤ NG(ζ1P ), P is a Sylow p-subgroup of NG(ζ1P ). Again we can use 3.2(b)
to get, NG(ζ1P ) = XP where X is a normal complement to P in NG(ζ1P ).

Considering the subgroup XP ′ of NG(ζ1P ), for any x ∈ X we have

(P ′)x = x−1P ′x ⊂ XP ′X = XXP ′ = XP ′.

Thus for x ∈ X and p ∈ P ,

(XP ′)xp = XxpP ′xp = X(P ′xp) = X(XP ′)p = XXpP ′p = XXP ′ = XP ′,

since X < NG(ζ1P ) = XP and P ′ < P . So XP ′ < NG(ζ1P ).
Note that XP ′ ∩ P = P ′. For z ∈ XP ′ ∩ P implies that z = xp for some

x ∈ X and p ∈ P ′. Then x = zp−1 ∈ PP ′ ⊂ P . But x ∈ X and X ∩ P = 1,
whence zp−1 = 1 and then z = p ∈ P . Conversely, P ′ ≤ XP ′ and P ′ ≤ P , so
P ′ ≤ XP ′ ∩ P .

Now

NG(ζ1P )/XP ′ = XP/XP ′ = XP ′P/XP ′ ∼= P/XP ′ ∩ P = P/P ′,

is a non-trivial abelian p-group. By 4.11, G has a non-trivial abelian quotient.
Thus G cannot be simple, which completes the proof. 2

Theorem 4.14 (Iwasawa c1941) The following are equivalent:

(a) G is supersoluble.

(b) G is equichained.

(c) The length of each maximal subgroup chain of G is equal to the number of
prime divisors of |G|.

Proof: (c) ⇒ (b): is clear. (b) ⇒ (a): Suppose that G is non-trivial; for the
result is vacuous if G = 1. If H < G then H is equichained. By induction, H is
supersoluble for any H < G. By 4.13, G is soluble. Thus G has a composition
series with cyclic factors of prime order. Since G is soluble, composition series
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of G is a maximal subgroup chain of G. It follows that any maximal subgroup
must have prime order. By 4.6, G must be supersoluble.

(a) ⇒ (c): Again, this is vacuous for G = 1. So suppose G is non-trivial. G
is supersoluble, so any maximal subgroup M has prime index in G by 1.9 (or
4.7). Since M is supersoluble, the length of each maximal subgroup chain of
M is equal to the number of prime divisors of |M |. Thus a maximal subgroup
chain in which M occurs as a term has length equal to the number of prime
divisors of |G|. The result follows as M was any maximal subgroup of G. 2

Historical Note O. Ore in [9] showed that G is a group whose subgroups and
quotients satify clt if and only if G is soluble and has conformal chains - that is,
any two maximal subgroup chains have the same length and the magnitudes of
the factors are the same in possibly a different order. Ore conjectured that it
was enough for the subgroups of G to satisfy clt for G to have conformal chains
and it was G. Zappa who proved this(see [17]).

Since a composition series of a soluble group has cyclic of prime order factors
and is a maximal subgroup chain, the condition on the magnitudes of the factors
becomes redundant. Thus soluble groups with conformal chains are precisely
the equichained groups. Iwasawa was the first to realize that the equichained
groups are precisely the supersoluble groups. One could use these facts to obtain
4.2.
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Chapter 5

Further Results

In this chapter, we revert to the situation where G is not necessarily finite. We
present some miscellaneous results regarding supersoluble groups. We shall not
give full proofs to some of these results - we shall either direct the reader to a
reference or merely indicate a proof.

Other finiteness conditions

Supersoluble groups satisfy other finiteness conditions other than max. These
generally follow from the fact that a supersoluble group is polycyclic-by-finite.

G is called finitely presented if it has a presentation consisting of finitely
many generators and relations.

A cyclic group has a presentation with one generator and at most one rela-
tion. Thus the cyclic groups are finitely presented. It is a theorem of Philip Hall
(see [10] 2.2.4) that a finitely presented-by-finitely presented group is finitely
presented. Thus using induction on the length of a supersoluble series, one can
obtain:

5.1 A supersoluble group is finitely presented. 2

G is residually finite if the following equivalent conditions hold:

1) For every 1 6= g ∈ G, there is Ng �G such that g /∈ Ng and G/Ng is finite.

2)
⋂
{N : N �G and G/N is finite} = 1.

5.2 A supersoluble group is residually finite.

Proof: We induct on the Hirsch number of a group G, h(G). If h(G) = 0 then
G is obviously finite and the result holds (take Ng = 1 for every g ∈ G in the
definition above). Thus assume that h(G) > 0.

By 2.8(b), G has an infinite free abelian normal subgroup, A, say. For any
natural number m, Am � G and (A : Am) is finite. Thus we have h(G/Am) =
h(G)− h(Am). It is clear that h(Am) = h(A) > 0. Thus h(G/Am) < h(G).
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By induction,⋂
{N/Am : N/Am�G/Am and G/N ∼= (G/Am)/(N/Am) is finite} = Am/Am.

That is, ⋂
{N : Am ≤ N �G and G/N is finite} ≤ Am.

Taking the intersection over all natural numbers m we get⋂
{N : N �G and G/N is finite} ≤ 1.

2

One can show that polycyclic-by-finite groups are finitely presented and are
residually finite.

Images

Given a polycyclic group G, the amount of supersolubility of its finite homo-
morphic images control the amount of supersolubility of G, in the following
sense:

Theorem 5.3 (Baer) If G is polycyclic and every finite homomorphic image of
G is supersoluble, then G is supersoluble.

Proof: see [15] 11.11. 2

Hypercyclic groups

A system of G is a sequence of subgroups of G, (Gα)0≤α≤β , where β is some
ordinal, such that

1 = G0 ≤ G1 ≤ ... ≤ Gβ = G,

Gα � G, for all α ≤ β and if λ is a limit ordinal, then Gλ =
⋃
α<λGα. As

with series, we call the Gα terms, the Gα+1/Gα factors, etc. Note that a finite
system is a series.

A hypercyclic system is a system with cyclic factors. We call G hypercyclic if
it possesses a hypercyclic system. Clearly, a supersoluble group is hypercyclic.
For a hypercyclic group to be supersoluble, it must at least be finitely generated.
In fact, this is enough to guarantee supersolubility.

Theorem 5.4 (Baer) A hypercyclic group is supersoluble if and only if it is
finitely generated.

Proof: For a proof of this see either [15] 11.10 or [12] VII.7.g.2
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More on clt groups

In chapter 4, we showed that a finite group G is supersoluble if and only if every
subgroup of G is clt. In [7], J. F. Humphreys proved a similar result regarding
the factor groups of G.

Theorem 5.5 (Humphreys) If G is a finite group of odd order all of whose
factors are clt, then G is supersoluble. 2

One cannot drop the hypothesis that G has odd order. For example, Sym(4)
is a group of even order with every factor group clt, but it is not supersoluble.

In [8], McLain showed that the supersolubility of finite group G is in some
sense controlled by the existence of subgroups between characteristic subgroups
of G.

Theorem 5.6 (McLain) Let G be a finite group. G is supersoluble if and only
if between any two characteristic subgroups H > K, there exist subgroups of
every possible order. 2

Generalized Central Series

Given a finite group G, g ∈ G is called a generalized central element of G if
< g > P = P < g > (or equivalently < g > P ≤ G) for every Sylow subgroup
P of G.

Set

ΞG =< g ∈ G : g is a generalized central element of G >,

and call ΞG, the generalized centre of G. One can easily show that ΞG is a
normal subgroup of G. One can also show that ΞG is nilpotent.

The method used to define the upper central series, can be used to define
the upper generalized central series of G as follows: Let ξ0G = 1, and then for
i ≥ 0, let ξi+1G be the subgroup of G such that ξi+1G/ξiG = Ξ(G/ξiG).

The hyper generalized centre of G is then ξG =
⋃
i ξiG, which since G is

finite must equal some term ξmG.

Theorem 5.7 (Agrawal [1]) Let G be a finite group. The following are equiv-
alent:

(a) G is supersoluble.

(b) ξnG = G for some n.

(c) ξG = G.

Proof: (b) ⇒ (c): This is obvious. (a) ⇒ (b): G has a normal non-trivial
cyclic subgroup < x >, say, by 1.5(b). The normality of < x > ensures that
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< x > P = P < x > for every Sylow subgroup P of G. Thus x is a non-
identity element that is a generalized central element. Therefore ΞG 6= 1, for
any supersoluble group G.

It follows that
1 = ξ0G < ξ1G < ξ2G < ξ3G < ....

If ξnG is the hyper generalized center of G and ξnG 6= G, then ξnG < ξn+1G,
since G/ξnG is supersoluble and Ξ(G/ξnG) is non-trivial, contradicting the fact
that ξnG was the last term in the series. So ξnG = G.

(c) ⇒ (a): This is the hardest part of the proof and we shall only give an
outline. For a complete proof see [1] 2.8.

The result is true for G = 1, so assume that G is non-trivial.
Several facts hold when G = ξG, namely:

(i) ξ(G/K) = G/K for every K �G.

(ii) G has a Sylow tower.

(iii) ΞG is non-trivial.

By (i), and using induction, every proper quotient ofG is supersoluble. Thus,
if the Frattini subgroup ΦG is non-trivial, G is supersoluble using 4.7(c). So we
may as well assume that ΦG = 1. Using (ii), G has a normal Sylow p-subgroup
P for p the largest prime dividing the order of G. Also using a simple induction
argument, one can show that G is soluble because it has a Sylow tower. The
fact that ΦP ≤ ΦG = 1 is enough to ensure that P is abelian.

We now aim to use Huppert’s Theorem, 4.6, to complete the proof. Let M
be a maximal subgroup in G. The solubility of G gives that (G : M) is a power
of a prime.

If (G : M) is not a power of p, then M contains a Sylow p-subgroup and
so P is contained in M . But then (G : M) = (G/P : M/P ). Since G/P is
supersoluble, by induction, (G : M) is prime and so G is supersoluble.

Suppose that (G : M) is a power of p. Let q be another prime that divides
the order of ΞG. If Q is a Sylow q-subgroup of ΞG, then Q < ΞG. This is
because ΞG is nilpotent. Thus Q is characteristic in ΞG and so normal in G. It
follows that Q ≤M and then (G : M) = (G/Q : G/M). Thus (G : M) is prime
and G is supersoluble. Thus we may assume that ΞG is a p-group.

Since ΞG is generated by generalized central elements and powers of general-
ized central elements are generalized central elements, G must have a generalized
central element of order p. Set

N =< g : g a generalized central element of G of order p > .

N �G. If N ≤M , then since (G : M) = (G/N : M/N), G is supersoluble.
If N is not contained in M then there is a generalized central element y of

order p that is not contained in M . < y > is a p-group, so < y >≤ P . Since P
is abelian, < y > �P .

One can show that the elements of G whose orders are p′- numbers, also
normalize < y >. Thus < y > �G, and since M < M < y >, we have
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G = M < y >. Hence (G : M) is the order of y, which is p. Thus G is
supersoluble by Huppert’s Theorem. 2

FINIS
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