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Abstract

In this thesis we are concerned mainly with supersolubility in finitary groups.

In Chapter 2, we study the local structure of locally supersoluble finitary

groups and extend results by Wehrfritz on the local structure of locally nilpo-

tent finitary groups.

In Chapter 3, we take an excursion from supersolubility. We generalize

Platonov’s theorems on linear groups of finite Prüfer rank and linear groups

satisfying non-trivial laws to certain finitary skew linear groups. We show

that there are no transitive finitary permutation groups of infinite degree with

finite Prüfer rank. We also show that an irreducible finitary linear group of

infinite dimension has infinite Prüfer rank and generates the variety of all

groups.

Chapter 4 is about supersolubility in irreducible and transitive finitary

groups. We prove that a locally supersoluble group which is either a transitive

finitary permutation group on an infinite set or an irreducible finitary skew

linear group of infinite dimension, is a p-group for some suitably chosen prime

p. In the appendix to Chapter 4, we extend these results.

In Chapter 5, we examine paraheight in finitary groups. Immediately we

see that the definition of paraheight is not satisfactory in the study of finitary
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groups and we offer several alternative definitions.

The final chapter, Chapter 6, is about generalizations of Engel elements.

We wish to produce supersoluble analogues of right and left Engel elements.

We give some definitions and prove that these behave similarly to Engel

elements in finite groups and certain finitary groups of positive characteristic.
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Notation and Conventions

Throughout this thesis, we shall adopt the following standardized notation,

unless we specify otherwise.

• D is a division ring and F is a field;

• F denotes the algebraic closure of the field F ;

• V is a left vector space over D and D(n) is the n-dimensional row vector

space over D;

• G is a group;

• Ω is a set;

• n is an integer;

• GL(V ) is the group of all D-automorphisms of V and GL(n,D) is the

group of all invertible n× n matrices over D. Also M(n,D) is the ring

of all n× n matrices over D;

• Sym(Ω) is the group of all permutations on Ω.
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Most maps will act from the right. Exceptions to this rule will be de-

terminants and bilinear, Hermitian and quadratic forms which will act from

the left. All vector spaces will be left vector spaces. We shall assume the

Axiom of Choice. If I is an indexing set, we will usually assume that I is

well-ordered.

Let P ,Q be properties of groups. We say that G is locally-P if every

finitely generated subgroup of G is contained in a subgroup enjoying the

property P . We call G a P-by-Q group if there is a normal subgroup N �G

such that N has the property P and G/N has the property Q.
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Chapter 1

Introduction

Classically, finite group theory was the study of finite permutation groups and

infinite group theory was the study of linear groups. In this thesis, we shall

study generalizations of these objects, the “finitary groups”. This chapter

will provide a brief introduction to the theory of finitary groups and will give

a review of that part of the basic theory of generalized soluble groups that

we need.

1.1 Finitary Permutation Groups

Let Ω be a set. The finitary symmetric group on Ω is the group FSym(Ω)

of permutations on Ω which fix all but finitely many elements of Ω. If g is a

permutation on Ω, we define its support to be

suppΩ(g) = {ω ∈ Ω : ωg 6= ω} .

Then

FSym(Ω) = {g ∈ Sym(Ω) : |suppΩ(g)| <∞} .
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A subgroup G of FSym(Ω) is called a finitary permutation group on Ω

and in this case, G has degree |Ω|.

Now any finitary permutation g ∈ FSym(Ω) can be written as a finite

product of cycles of finite length. Thus we define the parity of g in the same

way as for permutations on finite sets – that is, g has even parity if it can be

written as a product of an even number of transpositions, and has odd parity

otherwise. The alternating group on Ω is Alt(Ω), the subgroup consisting of

all even permutations in FSym(Ω). The group Alt(Ω) is simple when |Ω| ≥ 5.

Let g1, g2, . . . , gn ∈ FSym(Ω) and let ∆ =
⋃n
i=1 suppΩ(gi). Then 〈g1, . . . , gn〉

can be regarded as a permutation group on the finite set ∆ and so is itself

finite. In other words, FSym(Ω) is locally finite.

Let G ≤ FSym(Ω). We call G transitive if ωG = Ω for any ω ∈ Ω.

Let G be transitive. A G-congruence is an equivalence relation on Ω that

the action of G preserves. The equivalence classes of such a relation are

called G-blocks. There are always two G-congruences; namely, the trivial one

{(ω, ω) : ω ∈ Ω} and the universal one Ω×Ω. If these are the only two then

we call G primitive. Otherwise we call G imprimitive.

Given any subset Γ of Ω, we define its normalizer in G,

NG(Γ) = {g ∈ G : Γg = Γ} .

1.1.1 Proposition (cf. [2] Theorem 1.8). Let G ≤ FSym(Ω) be tran-

sitive and suppose that there is a G-congruence with distinct blocks (Ωi)i∈I

with |I| > 1. Then G permutes the blocks finitarily and transitively, and so

G/
⋂
i∈I NG(Ωi) is a transitive finitary permutation group on I. Moreover,

each block Ωi is finite and thus when Ω is infinite, I is infinite.
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When Ω is infinite, we know all possible primitive subgroups of FSym(Ω).

1.1.2 Theorem (The Jordan-Wielandt Theorem). Let G be a primitive

finitary permutation group of infinite degree. Then G is either FSym(Ω) or

Alt(Ω) for some infinite set Ω.

For a proof of this, see [51] Satz 9.4.

In the 1970s, P. M. Neumann studied imprimitive subgroups of FSym(Ω)

when Ω is infinite. There are two cases, both of which can be dealt with

relatively easily.

Let G be a transitive subgroup of FSym(Ω) and suppose that Ω is in-

finite. We call G almost primitive if there is a maximal proper non-trivial

G-congruence. If G is imprimitive but not almost primitive, then we call G

totally imprimitive. When dealing with these concepts, we do not need much

more that the following proposition.

1.1.3 Proposition (P. M. Neumann). Let G ≤ FSym(Ω) where G is

transitive and Ω is infinite.

1. If G is almost primitive then G has an image isomorphic to Alt(Ω) or

FSym(Ω).

2. Suppose that G is totally imprimitive and that Γ is a finite subset of

Ω. Then there is a proper G-congruence with Γ contained in one of its

G-blocks.

3. If G is totally imprimitive then both G and Ω are countably infinite.

For a general discussion of imprimitivity in finitary permutation groups

and for proofs of 1.1.3, see [20] Section 2.

11



We shall need another result of P. M. Neumann:

1.1.4 Lemma (Neumann’s Lemma). Let G be a transitive subgroup of

FSym(Ω) where Ω is an infinite set. Suppose that ∆ is a finite subset of Ω.

Then there is g ∈ G such that

∆g ∩∆ = ∅.

This is Lemma 2.3 in [21].

The commutator subgroup of a finitary permutation group is very important.

We conclude this section with results on this topic.

1.1.5. Suppose that G is an abelian transitive subgroup of FSym(Ω). Then

Ω is finite.

Proof. Let g ∈ G \ {1}. Then suppΩ(g) is non-empty and finite. Let ω ∈

suppΩ(g) and let x ∈ G. Then

(ωx)g = ωgx, 6= ωx,

so Ω = ωG = suppΩ(g) is finite.

1.1.6 Proposition. Let G be a transitive subgroup of FSym(Ω) where Ω is

infinite. Let N � G be such that G/N cannot be represented1 as a transi-

tive finitary permutation group of infinite degree. Then N is transitive. In

particular, by 1.1.5, G′ is transitive.

1.1.7 Theorem (P. M. Neumann). Let G be a transitive subgroup of

FSym(Ω) where Ω is infinite. Then G′ is the unique minimal normal transi-

tive subgroup of G. In particular, G′ is perfect.

1In this thesis, “represented” does not necessarily mean “represented faithfully”.
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For proofs of 1.1.6 and 1.1.7, see [21] Lemma 2.1 and Theorem 1 respec-

tively.

1.2 Finitary Linear Groups

Let V be a (left) vector space over the division ring D and let g be a D-

automorphism of V . In the affine general linear group V oGL(V ) on V , we

can consider commutators, centralizers and normalizers as in any group. We

shall adopt these notations in our theory. Thus we write [V, g] for V (g − 1),

CV (g) for the fixed-point stabilizer of g in V and so on.

Now we define a linear analogue of finitary permutation groups. Here the

commutator [V, g] plays the rôle that suppΩ(g) did in the previous section.

The finitary general skew linear group on V is

FGL(V ) = {g ∈ GL(V ) : dimD[V, g] <∞} .

A subgroup G of FGL(V ) is called a finitary skew linear group on V , over

D, of dimension dimDV . The space V becomes a D-G (bi)module in the

obvious way.

There is a D-epimorphism V → [V, g], v 7→ [v, g] with kernel CV (g) for

any g ∈ GL(V ). Thus the automorphism g is finitary, that is g ∈ FGL(V ),

if and only if CV (g) has finite D-codimension in V .

When n = dimDV is finite, FGL(V ) ∼= GL(n,D) and G is called skew

linear. If D is a field, then we drop the word “skew” from the above. Thus,

a linear group is (isomorphic to) a subgroup of GL(n, F ) for some positive

integer n and some field F .
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Let g1, g2, . . . , gn ∈ FGL(V ) and let G = 〈g1, . . . , gn〉. Then CV (G) =⋂n
i=1 CV (gi) has finite codimension in V , so there is a finite-dimensional sub-

space W of V with CV (G)⊕W = V . Let U = W +[V,G] = W +
∑n

i=1[V, gi].

Then U has finite dimension. Furthermore, if g ∈ G and w ∈ W then

wg = w(g − 1) + w ∈ [V,G] + W = U . Also [V,G] is G-invariant, so U is

a D-G submodule of V . Thus V = U ⊕ C for U a finite-dimensional D-G

submodule and some C ≤ CV (G). Now G can be regarded as a skew linear

group on U . Thus FGL(V ) is in a sense locally skew linear. Moreover, if

n = dimDU , one can choose a basis of V so that the coordinatized matrices

of the elements of G with respect to this basis lie in GL(n,D) 0

0 1

 .

Hence when D is a field, we can define the determinant of an element g ∈

FGL(V ), as in the finite-dimensional case.

Sometimes in this thesis, we will have to restrict the division ring D so that

we can obtain some reasonable results.

Let F be a subfield of the division ring D. The division ring D is locally

finite-dimensional over F if given any finite collection x1, . . . , xn ∈ D, the

subring 〈F, x1, . . . , xn〉 is finite-dimensional over F . Note that F does not

have to be central in D here and there is a possible ambiguity as to whether

we take left dimensions or right dimensions of the subrings 〈F, x1, . . . , xn〉.

However no such ambiguity arises (see, for example, Stewart [36] Lemma

2.1). If D is locally finite-dimensional over F and F is central in D, then D

is a locally finite-dimensional F -algebra.

Let G ≤ FGL(V ). We say that G is irreducible if V is irreducible as a D-G
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module, that is if V has precisely two D-G submodules, namely 0 and V . If

V is non-zero, but not irreducible, we say that V and G are reducible. The

group G is homogeneous if V is the direct sum of isomorphic D-G irreducible

submodules. We call G completely reducible if V is the direct sum of D-

G irreducible submodules. In this case, we can collect the isomorphic D-G

irreducible submodules together into homogeneous components of V .

LetG be an irreducible subgroup of FGL(V ). AG-system of imprimitivity

of V is a family of subspaces (Vω)ω∈Ω such that V =
⊕

ω∈Ω Vω and G preserves

this decomposition. That is, for any ω1 ∈ Ω and g ∈ G there is ω2 ∈ Ω such

that Vω1g = Vω2 . There is always one such system, namely V on its own.

If this is the only one, we call G primitive. Otherwise we say that G is

imprimitive.

1.2.1 Proposition. Let G be an irreducible subgroup of FGL(V ) with proper

G-system of imprimitivity (Vω)ω∈Ω. Then:

1. each Vω is irreducible as D-NG(Vω) module;

2. G permutes the Vω finitarily and transitively, and so G/
⋂
ω∈Ω NG(Vω)

is a transitive finitary permutation group on Ω;

3. each Vω has finite dimension over D and so when dimDV is infinite we

have |Ω| = dimDV . Furthermore dimDVω = dimDVω0 for all ω, ω0 ∈ Ω;

4. the group
⋂
ω∈Ω NG(Vω) is a subdirect product of isomorphic skew linear

groups of dimension dimDVω.

This is essentially 2.2.3 of [23].
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The following is a generalization of Clifford’s Theorem. The main part on

complete reducibility of normal subgroups was proved by Wehrfritz ([47]

Proposition 8) and earlier by Meierfrankenfeld ([19] Theorem 5.1) when D is

a field. The rest can be proved in a similar manner to the classical result.

1.2.2 Theorem (“Clifford’s Theorem”). Let G ≤ FGL(V ) and let N�G.

If G is completely reducible then so too is N . If G is irreducible, then the

D-N homogeneous components form a G-system of imprimitivity of V .

1.2.3 Proposition. Let V be an infinite-dimensional vector space over D

and let G be an irreducible subgroup of FGL(V ). Let 1 6= N � G be such

that G/N cannot be represented as a transitive finitary permutation group of

infinite degree. Then N is irreducible. In particular, G′ is irreducible.

Proof. By 1.2.2, N is completely reducible and the distinct D-N homoge-

neous components (Vi)i∈I form a G-system of imprimitivity of V . The group

G = G/
⋂
i∈I NG(Vi) is a transitive subgroup of FSym(I) where |I| is infinite

or 1 by 1.2.1. But N normalizes each Vi, so G is an image of G/N . By

hypothesis, |I| = 1. Therefore N is homogeneous.

Let U be any D-N irreducible submodule of V . Suppose that U has finite

dimension. Since U is a non-trivial D-N module, [U, n] has dimension ≥ 1

for some n ∈ N . Now V is a direct sum of infinitely many copies of U , so

[V, n] must have infinite dimension. This contradicts finitariness, so U has

infinite dimension.

If g ∈ G then Ug ∩ U 6= 0, since g is finitary. Now Ug is an irreducible

D-N submodule of V , so we have Ug = U . It follows that U is a D-G

submodule of V and so U = V . Hence N is irreducible.
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1.2.4 Proposition. Let G be an irreducible and imprimitive subgroup of

FGL(V ) where dimDV is infinite. Then G′ is the minimal normal irreducible

subgroup of G. Thus G′ is perfect.

This is 6.2 of [49].

Proposition 1.2.4 is not true for primitive groups. Meierfrankenfeld (see

[19] Example 8.1) has shown that a free group G of infinite rank is an infinite-

dimensional primitive irreducible finitary linear group over the rationals. A

free group is residually soluble but not itself soluble, so G > G′ > G′′ > . . ..

However, we have the following result in the primitive case.

1.2.5. Let G be an irreducible and primitive subgroup of FGL(V ) where V

is infinite-dimensional. Then every non-trivial ascendant (e.g. subnormal)

subgroup of G is irreducible and primitive.

The proof of 1.2.5 can be found in [48].

Let V be a D-G module and let A be a totally ordered set. A D-G series

of V is a set of pairs of D-G submodules {(Λα, Vα) : α ∈ A} satisfying the

following:

1.
⋃
α∈A Λα \ Vα = V \ {0},

2. Λα ≤ Vβ for every α < β where α, β ∈ A,

3. Vα ≤ Λα for every α ∈ A.

The submodules Λα, Vα are referred to as terms and the D-G modules Λα/Vα

factors. For general properties of these generalized series, the reader is

directed to [30] Section 1.2. One fact that we will use is that if A =
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{α1 < . . . < αn} is finite then Vα1 = 0, Λαn = V and Λαi = Vαi+1
. In other

words, we recover the definition of finite series.

A D-G composition series of V is a D-G series whose factors are irre-

ducible. By Zorn’s lemma, every D-G module has a composition series.

Let G ≤ FGL(V ). We call G unipotent if for every g ∈ G, the endomor-

phism g − 1 is nilpotent. We call G a stability group if there is a D-G series

{(Λα, Vα) : α ∈ A} of V such that [Λα, G] ≤ Vα for all α ∈ A.

1.2.6 Theorem. Let G ≤ FGL(V ).

1. There is a unique maximal normal stability subgroup S(G) of G, which

contains every normal stability subgroup of G. Furthermore, S(G) sta-

bilizes every D-G composition series of V and G/S(G) has a faithful

completely reducible finitary linear representation on the direct sum of

the composition factors of any composition series of V .

2. If G is completely reducible then S(G) = 1.

3. If G is a stability group then it is unipotent.

4. If D is locally finite-dimensional over its centre, then G has a unique

maximal normal unipotent subgroup U(G) containing every normal unipo-

tent subgroup of G and furthermore U(G) = S(G).

5. Let G be unipotent. Then G is a p-group for charD = p > 0 and is

torsion-free when charD = 0.

For proof of 1.2.6, see [44] 2.1 and 2.2.
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1.3 Generalized Solubility Conditions

Let G be any group. We define the upper central series of G as follows. Let

ζ0(G) = 1. Given ζi(G) for any ordinal i, define ζi+1(G) to be the (normal)

subgroup of G such that ζi+1(G)/ζi(G) is the centre of G/ζi(G). If j is a limit

ordinal then put ζj(G) =
⋃
i<j ζi(G). We have an ascending characteristic

series of G,

1 = ζ0(G) ≤ ζ1(G) ≤ . . . .

This series becomes stationary. For example if k0 is an ordinal such that

|k0| > |G| then ζk0(G) = ζk0+1(G). Choose k to be the least k0 for which this

happens. The ordinal k is called the central height of G and ζ(G) = ζk(G) is

called the hypercentre of G. A hypercentral2 group is a group which coincides

with its hypercentre.

Every group G has a unique maximal normal locally nilpotent subgroup

η(G) called the Hirsch-Plotkin radical of G.

LetN�G. The subgroupN is calledG-hypercyclic if there is an ascending

series

1 = N0 ≤ N1 ≤ . . . ≤ Ni ≤ . . . ≤ Nj = N

such that each Ni �G and each factor Ni+1/Ni is cyclic. Put

λ(G) = 〈N �G : N is G-hypercyclic 〉 .

This is a characteristic G-hypercyclic subgroup of G. The group G is called

hypercyclic if it is G-hypercyclic, or equivalently if λ(G) = G. If G has a

finite G-hypercyclic series, then we say that G is supersoluble.
2Some authors call subgroups of ζ(G), hypercentral subgroups of G. We shall refrain

from this.
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The following results are well-known:

1.3.1 Proposition. 1. A supersoluble group is nilpotent by finite-abelian.

2. A hypercentral group is hypercyclic and a hypercyclic group is hypercentral-

by-abelian.

3. A locally nilpotent group is locally supersoluble and a locally supersoluble

group is locally-nilpotent by abelian.

4. A locally supersoluble, hypercentral by finitely-generated group is hyper-

cyclic.

5. A locally nilpotent, hypercyclic group is hypercentral.

6. A finitely generated hypercyclic group is supersoluble.

Part 1 is [31] 5.4.10 and Part 2 is proved similarly. Part 3 follows from

[31] 5.4.6(ii) and from Part 1. Part 4 is [39] Lemma 11.19 and Part 5 can be

found in [13] Corollary 1.12 on page 29. Part 6 is due to Baer and a proof

can be found in [39] 11.10

1.3.2 Proposition (cf. [31] 5.4.8). Let G be a supersoluble group and

let N � G. Then G has a G-supersoluble series (i.e. a finite G-hypercyclic

series) with N as a term. Any G-supersoluble series of G can be refined to

one whose factors are cyclic of prime or infinite order.

The next result says that we need to look at generalized soluble finitary

groups rather than just soluble finitary groups to get interesting results.
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1.3.3 Proposition. A soluble transitive finitary permutation group has finite

degree and a soluble irreducible finitary skew linear group has finite dimen-

sion.

Proof. Let G be a transitive subgroup of FSym(Ω) with Ω infinite. Then

G′ 6= 1 by 1.1.5 and G′ is perfect by 1.1.7. Therefore G cannot be soluble.

If G is a soluble irreducible subgroup of FGL(V ) and dimD(V ) is infinite,

then by 1.2.3 and induction, the last non-trivial term S of the derived series

of G is irreducible. But then S is an abelian irreducible finitary skew linear

group of infinite dimension. This cannot exist (the proof is similar to that of

1.1.5).

When we study locally soluble finitary groups, we can usually reduce to

an imprimitive group.

1.3.4 Theorem (Wehrfritz [47]). Let G ≤ FGL(V ) and suppose that G is

primitive and irreducible. Let H be a locally soluble normal subgroup of G.

If dimD(V ) is infinite then H = 1.

One other notion that we will use is that of a local system. A set of subgroups

L of G is a local system of G, if G =
⋃
L∈L L and for every pair L,M ∈ L

there is N ∈ L such that L,M ≤ N .
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Chapter 2

Local systems of Locally

Supersoluble Groups

2.1 Local structure

In 1960, Garas̆c̆uk [7] proved that a locally nilpotent linear group is necessar-

ily hypercentral. Nine years later, Zalesskii [52] examined the skew linear case

and managed to get similar results for locally nilpotent skew linear groups

over locally finite-dimensional division algebras, but with a restriction on the

action of the group. It is still an open question, despite much effort, as to

whether a locally nilpotent skew linear group over a locally finite-dimensional

division algebra is hypercentral.

In 1971, Wehrfritz ([38] Theorem A) extended the result of Garas̆c̆uk and

proved that a locally supersoluble linear group is hypercyclic. With similar

restrictions to those of Zalesskii, Stewart [35] extended Wehrfritz’s result to

matrix groups over locally finite-dimensional division algebras.
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In this chapter we consider locally supersoluble finitary skew linear groups.

2.1.1 Example. Let D be any division ring and let G be the McLain group

M(Q, D). The group G is a locally nilpotent (and thus locally supersoluble)

finitary skew linear group over D that has no non-trivial cyclic normal sub-

groups and, in particular, is centreless.

The McLain group (with respect to Q) is constructed as follows (see [18]

or [44] for proofs). Let V be the left vector space over D with ordered basis

(vi : i ∈ Q). For any two rationals i and j, let ϕij be the linear map of V given

by vi 7→ vj and vk 7→ 0 for all k 6= i. Then the McLain group G = M(Q, D)

is the group

G = 〈1 + dϕij : d ∈ D, i, j ∈ Q, i > j〉 .

Now for d 6= 0, the space V (1 + dϕij − 1) = V ϕij = Dvj has finite dimen-

sion. Thus G ≤ FGL(V ). The group G is a stability group, thus is locally

nilpotent. It is characteristically simple.

If G has a non-trivial cyclic normal subgroup then λ(G) 6= 1. Now λ(G)

is a characteristic subgroup of G and G is characteristically simple. Thus G

is hypercyclic and so is hypercentral by 1.3.1 Part 5. But then ζ1(G) = G is

abelian, which is a contradiction.

2.1.1 shows that the finitary skew linear situation is quite different from

the linear situation. However even though the groups in 2.1.1 are as far

away as possible from being hypercyclic, they do have a rich local structure.

Wehrfritz proved in [43] and [45] that certain locally nilpotent finitary skew

linear groups have local systems of hypercentral normal subgroups. Here we

prove the supersoluble analogue of this theorem.
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Until Section 2.3, D is either a field F or a locally finite-dimensional

division algebra over a perfect field F unless stated otherwise. When D is a

field, we can assume that it is algebraically closed ; for clearly FGL(V ) embeds

into FGL(V ⊗D D) for any field D.

In this setting, any subgroup G of FGL(V ) has a unique maximal normal

unipotent subgroup U(G) by 1.2.6.

Let g ∈ FGL(V ). We call g a d-element if F ⊗F F [g] is semisimple

Artinian. Since F is perfect, g is a d-element if and only if V is completely

reducible as an F [g]-module (see [39] Theorem 1.24).

Any element g of FGL(V ) can be thought of as a skew linear map. Thus

there is a unique unipotent element gu and a unique d-element gd such that

g = gugd = gdgu (see [34] page 84). This is the Jordan decomposition of g.

Also, locally nilpotent subgroups of FGL(V ) have a Jordan decomposition:

2.1.2 Lemma. Let G be a locally nilpotent subgroup of FGL(V ). Then the

maps g 7→ gu and g 7→ gd are homomorphisms of G onto subgroups Gu and

Gd (respectively) of FGL(V ). Also [Gu, Gd] = 1 and GGu = GGd = Gu×Gd,

the Jordan decomposition of G. Furthermore, the kernel of g 7→ gd is U(G).

Proof. Everything except the last part of the statement is the content of [43]

2.8. Let K be the kernel of the map G→ Gd. If g ∈ U(G) then g = gu, that

is gd = 1 by uniqueness of the decomposition. Thus g 7→ 1 and U(G) ≤ K.

Conversely, K = {g = gugd : gd = 1}, so K is a unipotent normal subgroup

of G. Thus K = U(G).

2.1.3 Lemma (Wehrfritz). Let G ≤ FGL(V ) and let N be a locally nilpo-

tent normal subgroup of G with U(N) = 1. For every finite subset X of G,
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there is a normal subgroup K of G with X ⊆ K and N ∩K hypercentral (of

central height ≤ ω2).

2.1.3 is a restatement of 4.3(d) of [45] for D a field and 4.2(d) of [43]

otherwise.

2.1.4 Lemma. Let G ≤ FGL(V ) and let X be any subset of G for which

n = dimD[V,X] is finite. Put N = η(
〈
XG
〉
). Then Nu is nilpotent of class

≤ 2n.

Proof. Let G = G(Nd × Nu). Pick any D-G composition series of V , say

(Vα,Λα)α∈I . Intersecting this series with [V,X] and removing repetitions, we

obtain a finite series

0 = [V,X] ∩ Vα1 ≤ [V,X] ∩ Λα1 = [V,X] ∩ Vα2 ≤ . . .

≤ [V,X] ∩ Λαi−1
= [V,X] ∩ Vαi ≤ . . .

≤ [V,X] ∩ Λαn = [V,X]

where α1 ≤ α2 ≤ . . . ≤ αn are elements of I.

Consider the series

0 ≤ Vα1 ≤ Λα1 ≤ Vα2 ≤ . . . ≤ Vαn ≤ Λαn ≤ V. (2.1)

Now [V,X] = [V,X]∩Λαn and [Vα1 , X] ≤ [V,X]∩ Vα1 = 0. Also if 1 < i ≤ n

then

[Vαi , X] ≤ [V,X] ∩ Vαi = [V,X] ∩ Λαi−1
≤ Λαi−1

.

Furthermore, the series 2.1 is G-invariant and since N ≤
〈
XG
〉

, we have

[V,N ] ≤ Λαn , [Vα1 , N ] = 0 and [Vαi , N ] ≤ Λαi−1
for 1 < i ≤ n.
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Let B ≤ A be D-G modules with [A,N ] ≤ B and choose n ∈ N . On the

factor A/B, we have 1 ≡ n ≡ nund as a Jordan decomposition for n. By the

uniqueness of Jordan decomposition, nu ≡ 1 on the factor A/B. In other

words, [A,Nu] ≤ B. Thus [V,Nu] ≤ Λαn , [Vα1 , Nu] = 0 and [Vαi , Nu] ≤ Λαi−1

for 1 < i ≤ n.

Put Cα = CG(Λα/Vα). Then NuCα/Cα is a unipotent normal subgroup

of the irreducible group G/Cα for every α ∈ I. By 1.2.6, Nu ≤ Cα and so

[Λα, Nu] ≤ Vα for every α ∈ I.

Consequently, Nu stabilizes the series 2.1 and thus Nu is nilpotent of class

≤ 2n by [15] Theorem 1.C.1.

We are now in the position to prove one of the main results of this chapter.

2.1.5 Theorem. Let G be a locally-nilpotent by abelian subgroup of FGL(V ).

Then G has a local system of hypercentral by finitely-generated-abelian normal

subgroups.

Proof. Let X be a finite subset of G and put H =
〈
XG
〉
. Set N = η(H) =

H ∩ η(G). Since G/η(G) is abelian,

H/N ∼= Hη(G)/η(G) = 〈η(G)x : x ∈ X〉 .

Thus H/N is a finitely generated abelian group. Now it is sufficient to prove

that N is hypercentral.

By 2.1.2, there is an epimorphism N −→ Nd with kernel U = U(N). Also

U �G; for U g is a unipotent normal subgroup of N for every g ∈ G. Let X

be the set {Ux : x ∈ X}. Now N/U is a locally nilpotent normal subgroup of

H/U with U(N/U) = 1. Thus by 2.1.3, there is K �G/U with X ⊆ K and

(N/U)∩K hypercentral. Also
〈
X
G
〉

= H/U , so Nd
∼= N/U is hypercentral.
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By 2.1.4, Nu is nilpotent and thus NuNd is hypercentral (of height ≤ ω2).

Since N ≤ NuNd, we have that N is hypercentral, as required.

2.1.6 Corollary. Let G be a locally supersoluble subgroup of FGL(V ). Then

G has a local system of hypercyclic normal subgroups.

Proof. By 2.1.5, any finite subset X of G is contained in a hypercentral by

finitely-generated normal subgroup H � G. Since H is locally supersoluble,

H is hypercyclic by 1.3.1 Part 4.

2.2 Monomiality

We now deduce that certain irreducible locally supersoluble groups of infinite

dimension must be imprimitive. This is a special case of 1.3.4. Note that 1.3.4

does not need the restrictions on D that we have made here. We also show

that irreducible locally supersoluble finitary linear groups over algebraically

closed fields are “monomial”, so in this case they are as imprimitive as you

can get.

2.2.1 Lemma. An irreducible finitary group G of infinite dimension over

an arbitrary division ring E has no non-trivial cyclic normal subgroups. In

particular, it is centreless.

Proof. Let G be an irreducible subgroup of FGL(U) where U is a vector

space over E. Suppose that 1 6= 〈x〉�G. Now if g ∈ G then

[U, x]g = [Ug, xg] ⊆ [U, 〈x〉] = [U, x].

We have shown that [U, x] is a non-zero E-G submodule of U and since U is

irreducible, it follows that U = [U, x] has finite dimension.
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2.2.2 Proposition. Let H be a locally-nilpotent by abelian (e.g. locally su-

persoluble) normal subgroup of G ≤ FGL(V ). Suppose that V has infinite

dimension. If G is irreducible and primitive then H = 1.

Proof. Let x ∈ H. By 2.1.5, H1 =
〈
xH
〉

contains a hypercentral normal

subgroup H2 with the quotient H1/H2 abelian. By 1.2.5, H2 and H1 are

irreducible. By 2.2.1, H2 is centerless, that is H2 = 1. Therefore H1 is

abelian and again by 2.2.1, H1 = 1. Thus x = 1 and H = 1.

Let G be an irreducible subgroup of FGL(V ). The group G is called

monomial if it has a G-system of imprimitivity (Vω)ω∈Ω such that each Vω

has dimension 1.

2.2.3 Proposition. Let G be an irreducible abelian by locally-supersoluble

subgroup of FGL(V ) where V is a vector space over the algebraically closed

field K. Then G is monomial.

Proof. By 2.2.2, G is imprimitive with G-system of imprimitivity
⊕

ω∈Ω Vω,

say. Fix ω and let N = NG(Vω). By 1.2.1, Vω is finite-dimensional and

irreducible as a K-N module. Thus N/CN(Vω) is an irreducible linear group.

By [39] Theorem 1.14, N/CN(Vω) is monomial.

Let v1, . . . , vm be a monomial basis of Vω; that is (Kvi)1≤i≤m is a N -

system of imprimitivity of Vω. Now vig ∈ Vωg for 1 ≤ i ≤ m and g ∈ G,

so it is enough to show that v1g, . . . , vmg is a monomial basis of Vωg under

the action of NG(Vωg). For then if T is a right transversal of G to N then

(vit : 1 ≤ i ≤ m, t ∈ T ) is a monomial basis for G.

Let n ∈ N . Then vign = (vin
g−1

)g = (αvj)g for some α ∈ F and

1 ≤ j ≤ m, as required.
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Proposition 2.2.3 applies to finitary linear groups over algebraically closed

fields, but we can get around this restriction and obtain some results when

the ground field is not algebraically closed.

Let G ≤ FGL(V ) where V is a vector space over K. We call G absolutely

irreducible if it is irreducible when regarded as a subgroup of FGL(V ⊗K
K). If we are prepared to extend our field slightly, we may assume that an

irreducible group is absolutely irreducible.

2.2.4 Theorem (Leinen [16]). Let G ≤ FGL(V ) where V is a vector space

over the field K and suppose that G is irreducible. Then there is a field L

containing K such that the degree [L : K] is finite, V is a vector space over

L and G is absolutely irreducible as a subgroup of FGL(LV ). Furthermore

[L : K] divides dimK [V, g] for every g ∈ G.

2.2.5 Corollary. Let G be a locally supersoluble subgroup of FGL(V ), where

V is a vector space over the field K.

1. If G is irreducible and dimKV is infinite then there is an abelian normal

subgroup A of G such that G/A is a transitive finitary permutation

group of infinite degree.

2. If G is completely reducible then G is abelian by locally-finite.

Proof. Suppose that G is irreducible. By Leinen’s Theorem 2.2.4, we may as-

sume that K is algebraically closed. Now by 2.2.3, G is monomial. Applying

1.2.1 Parts 2 and 4, G has an abelian normal subgroup A such that G/A is

a transitive finitary permutation group. In particular, G/A is locally-finite.

Also dimK(V ) is infinite, so the degree of the permutation group G/A is

infinite giving Part 1.
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If G is completely reducible then it embeds into a direct product of irre-

ducible groups each an image of G. We have seen that any irreducible group

of infinite dimension is abelian by locally-finite. The finite-dimensional case

is a consequence of [39] Theorem 1.14. The result follows.

2.3 Modulo the Hirsch-Plotkin radical

We have seen that in general a locally supersoluble group is locally-nilpotent

by abelian. We can say more when G is a finitary group over a certain type

of division ring. In order to do this, we use the local Zariski topology. We

shall also use this topology in the next chapter.

For the rest of this chapter, D is a division ring that is locally finite-

dimensional over a subfield F and V is a left vector space over D. Some of

the ideas in this section are developed for D a field in Puglisi [28].

Let G ≤ FGL(V ) and X ≤ Y be finitely generated subgroups of G.

Now X is skew linear over D, say X = 〈x1, . . . , xs〉 ≤ GL(n,D) and further,

X ≤ GL(n,E) where E is the subring of D generated by F together with the

entries of the matrices x1, . . . , xs. The ring E is finite-dimensional over F ,

say of dimension m, and so X ≤ GL(mn,F ). Therefore X carries the usual

Zariski topology of linear groups (see [39] Chapter 5) and has a connected

component X◦ containing the identity. Using the proof of [36] Proposition

2.2, we see that the topology induced on X from the Zariski topology on

Y , coincides with the Zariski topology on X. Thus X◦ is well-defined and

X◦ ≤ Y ◦.

2.3.1 Lemma ([39] Lemma 5.2). Let G be a linear group. Then G◦ is
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normal in G and has finite index in G. Moreover G◦ is contained in all

closed subgroups of finite index in G.

Set

G− =
⋃
{X◦ : X is a finitely generated subgroup of G }.

The following result is well-known.

2.3.2 Lemma. Let G ≤ FGL(V ) and let X be a class1 of groups.

1. G− �G and G/G− is locally finite.

2. If for each finitely generated subgroup X of G, we have X◦ ∈ X then

G− is locally-X.

Proof. Each X◦ �X and the X◦ form a local system of G−. Thus G− � G

and 2 follows. A finitely generated subgroup of G/G− has the form G−X/G−

where X is a finitely generated subgroup of G. Now X◦ has finite index in

X by 2.3.1 and X◦ ≤ G−. Thus G−X/G− is finite.

2.3.3 Proposition. Suppose that G is a locally supersoluble subgroup of

FGL(V ). Then G is locally-nilpotent by periodic-abelian.

Proof. Let X be a finitely generated subgroup of G. Then X is supersoluble.

By 1.3.1 Part 1, there is a nilpotent normal subgroup N of finite index in X.

By [39] 5.11(ii), the Zariski closure N of N in X is also nilpotent and trivially

of finite index in X. Thus by 2.3.1, X◦ ≤ N . That is, X◦ is nilpotent. Now

1By a class of groups X, we mean a class in the usual sense together with the property

that (a) X contains the trivial group, and (b) any group isomorphic to one in X is itself

in X.
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G− is locally nilpotent and G/G− is periodic by 2.3.2. Since G− ≤ η(G) and

G/η(G) is abelian (by 1.3.1 again), the result follows.
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Chapter 3

Varietal Properties and Rank

Restrictions

3.1 Prüfer rank and Varieties

A group G is said to have finite Prüfer rank r if every finitely generated

subgroup of G can be generated by r elements, and if r is the smallest

integer with this property. If no such integer r exists, we say that G has

infinite Prüfer rank. In this chapter we shall use the word “rank” without

further qualification to mean “Prüfer rank”.

V. Platonov proved the following result in [27]:

3.1.1 Theorem (Platonov’s Rank Theorem). Let G be a subgroup of

GL(n, F ) where F is a field of characteristic p ≥ 0. Suppose that G has

finite rank r. Then G is soluble-by-finite. Furthermore, if p > 0 then G has

an abelian normal subgroup of finite index bounded in terms of r, n and p.
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The notion of rank has the following properties:

3.1.2. Let H ≤ G and N �G. If G has finite rank, then so do H and G/N .

If G/N and N have finite rank, then so does G.

In particular, any polycyclic group has finite rank.

A set of words W is a subset of the free group on the countably infinite set

{x1, x2, x3, . . .} where xi 6= xj for positive integers i 6= j. Let G be a group

andW be any set of words. If w = xj1i1 · · ·x
jr
ir
∈ W and g1, . . . , gr ∈ G then the

value of w at (g1, . . . , gr) is w(g1, . . . , gr) = gj1i1 · · · g
jr
ir

. If w(g1, . . . , gr) = 1

for all g1, . . . , gr ∈ G then G satisfies the word w and G satisfies the law

xj1i1 · · ·x
jr
ir

= 1. The variety given by W is the class B(W ) of all groups G

such that all the words in W are satisfied by G. A class of groups X is called

a variety if X = B(W ) for some set of words W . Given any group G, the

variety generated by G is the smallest variety V(G) containing G.

3.1.3 Proposition. A variety is closed with respect to forming subgroups

and quotients, and is residually and locally closed.

This result is 2.3.3 and 2.3.4 of [31].

In [26], Platonov proves the following theorem, which has a similar flavour

to 3.1.1.

3.1.4 Theorem (Platonov’s Variety Theorem). Let G be a linear group.

Then either G generates the variety of all groups or G is soluble-by-finite.

Consequently, a linear group satisfies a non-trivial law if and only if it is

soluble-by-finite.

P. M. Neumann [20] has proved the next result regarding varieties.
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3.1.5 Theorem. Let G ≤ FSym(Ω). If G satisfies a non-trivial law then the

orbits of G on Ω are finite. Consequently, a transitive finitary permutation

group of infinite degree generates the variety of all groups.

In this chapter, we provide generalizations of 3.1.1 and 3.1.4, and a fini-

tary linear analogue of 3.1.5. We shall prove the following:

• A finitary permutation group with finite rank has finite orbits (Theorem

3.4.1);

• An irreducible finitary skew linear group of infinite dimension over a

division ring which is locally finite-dimensional over a subfield, has

infinite rank and generates the variety of all groups (Theorem 3.4.2).

3.2 Generalizations of Platonov’s Theorems

3.2.1 Theorem. Let D be a division ring which is locally finite-dimensional

over a subfield F , let V be a vector space over D and let G ≤ FGL(V ).

1. Suppose that G has finite rank. Then G is locally-soluble by locally-

finite. Furthermore, if charD is positive then G is abelian by locally-

finite.

2. The group G either generates the variety of all groups or is locally-

soluble by locally-finite.

The unitriangular group G = Tr1(3,Z) of lower triangular 3× 3 integral

matrices with 1’s on the diagonal, is polycyclic and so has finite rank by

3.1.2. Now G is not abelian by locally-finite, so in general it is not true
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that a finitary linear group of characteristic 0 with finite rank is abelian

by locally-finite – i.e. the restriction of the characteristic in 3.2.1 Part 1 is

necessary.

We now head towards a proof of 3.2.1.

3.2.2 Proposition. Let G ≤ FGL(V ) where V is a vector space over D and

D is locally finite-dimensional over the subfield F .

1. Suppose that X is a subgroup-closed class of groups such that if L is

linear over a field and L ≥ P ∈ X, then the Zariski closure of P in

L lies in X. If G is locally (X-by-finite) then G is locally-X by locally-

finite.

2. Suppose that X is a variety. If G is locally (X-by-finite) then G is X

by locally-finite.

Part 2 of 3.2.2 for D is field is Theorem 2.3 of Puglisi [28].

Proof. Let H be a finitely generated subgroup of G. Now H is linear over

F (see section 2.3). By assumption there is a normal subgroup N ∈ X with

H/N finite.

In case 1, the closure N of N in H lies in X. Now N ≤ N , so N is a

closed subgroup of finite index in H. Thus H◦ ≤ N by Lemma 2.3.1. Since

X is subgroup closed, we have H◦ ∈ X.

In case 2, H has a closed normal X-subgroup M of finite index in H by

[39] Lemma 10.7 (for example, in the notation there take M = H ∩AF (N)).

By 2.3.1 again, H◦ ≤M . Using 3.1.3, we get H◦ ∈ X.

In either case, we have H◦ ∈ X. By Lemma 2.3.2, G− is locally-X and

G/G− is locally finite. If X is a variety, we can apply 3.1.3 to get G− ∈ X.
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Proof of 3.2.1. Let G have finite rank and let H be a finitely generated

subgroup of G. Now H is linear over F and has finite rank (by 3.1.3). By

Platonov’s Rank Theorem 3.1.1, H is soluble-by-finite and when charF =

charD > 0, we have that H is abelian-by-finite. In the positive characteristic

case we can apply Proposition 3.2.2 Part 2; the abelian groups form a variety.

In general, G satisfies the hypotheses of 3.2.2 Part 1. For in H, the closure

of a soluble normal subgroup is a soluble normal subgroup by [39] Theorem

5.11(i). Therefore Part 1 of the Theorem follows.

Suppose that G does not generate the variety of all groups. Then nor

does any subgroup either. Let H be any finitely generated subgroup of G.

Since H is linear, we can apply Platonov’s Variety Theorem 3.1.4. Thus H

is soluble-by-finite. An application of 3.2.2 Part 1 finishes the proof.

3.2.3 Remark (Tits’ Alternative). Let G ≤ FGL(V ) where V is a vector

space over D and D is a division ring which is locally finite-dimensional over

a subfield. Then G is either locally-soluble by locally-finite or contains a free

group of free rank 2.

This result, for D a field, is proved by Phillips ([24] Section 5.6) and also

by Puglisi ([28] Theorem 2.1). The proof is an application of 3.2.2 Part 1

together with the Tits’ Alternative ([39] Theorem 10.16) for linear groups.

A. Lichtman (see [34] Theorem 1.4.9) has constructed a finitely generated

skew linear group G which satisfies a non-trivial law, contains no non-cyclic

free subgroup and is not soluble-by-finite. Because G is finitely generated,

it cannot be locally-soluble by locally-finite. Thus 3.2.1 Part 2 and 3.2.3 are

not true when D is an arbitrary division ring.
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3.3 Classification of Simple Locally Finite Fini-

tary Groups

Using the Classification of Finite Simple Groups (CFSG), J. Hall [10] classi-

fied all simple locally finite finitary linear groups of infinite dimension. Re-

cently, Wehrfritz [49] finished the classification of all simple locally finite

finitary groups and extended some work on primitive groups by Phillips [22].

One can use these results as machinery to deal with locally finite primitive

finitary skew linear groups (provided, of course, that we accept CFSG).

3.3.1 Theorem. Let G be a locally finite primitive finitary skew linear group

of infinite dimension. Then G contains a simple normal subgroup S.

This theorem appears in [22] Phillips for finitary linear groups and as

stated in [49] Wehrfritz. Moreover, S turns out to be G′. This was proved

for finitary linear groups by Leinen and Puglisi ([17] Theorem B) and inde-

pendently by Redford in [29]. Wehrfritz proves the general case in [49]. As

indicated above, we know all possibilities for S. We describe these now.

Let U be an infinite-dimensional vector space over the field F . Let f be

a symplectic form1 on U , that is an alternating bilinear form on U . The

finitary symplectic group on U with respect to f is

FSp(U, f) = {g ∈ FGL(U) : f(xg, yg) = f(x, y) ∀x, y ∈ U} ,

i.e. all of the finitary isometries of f .

Similarly, given a unitary form f on U , i.e. a Hermitian form with respect

to some involution of the field F , we have the finitary unitary group FU(U, f)

1We shall only consider non-degenerate forms.
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of all finitary isometries of f . Let SU(U, f) be the subgroup of all elements

in FU(U, f) of determinant 1.

If q is a quadratic form on U then we have the finitary orthogonal group

FO(U, q) of all finitary isometries of q, i.e. all g ∈ FGL(U) with q(xg) = q(x)

for all x ∈ U . We let Ω(U, q) = (FO(U, q))′.

A transvection of U is a map tϕ,w : U → U , x 7→ x+ (xϕ)w where w is a

fixed vector in U and ϕ ∈ U∗, the dual of U , such that wϕ = 0. Let W be

any F -subspace of U∗ such that

annU(W ) = {u ∈ U : uϕ = 0 ∀ϕ ∈ W} = 0.

Then we have the special transvection group

T (W,U) = 〈tϕ,x : ϕ ∈ W,x ∈ U, xϕ = 0〉 ,≤ FGL(U).

3.3.2 Theorem (Hall/Wehrfritz). Let G be a locally finite simple subgroup

of FGL(V ) that is not a skew linear group2, where V is a vector space over

the division ring D. Then G is isomorphic to one of the following:

1. an infinite alternating group (this is the only possibility when charD =

0);

2. FSp(U, f) for some symplectic form f ;

3. SU(U, f) for some Hermitian form f ;

4. Ω(U, q) for some quadratic form q;

5. T (W,U) where W ≤ U∗ and annU(W ) = 0.

2i.e. not isomorphic to a subgroup of GL(n,E) for any n and any division ring E
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Here U is some vector space over some subfield F of Fp, the algebraic closure

of the field of p elements, where p = charD. In particular, the subgroup S in

3.3.1 is one of the above groups.

3.3.3 Corollary. A primitive locally finite infinite-dimensional finitary group

G contains copies of all finite groups.

Proof. By 3.3.1 we may assume that G is simple. We apply 3.3.2. An infinite

alternating group G contains all finite groups; for Alt(n+2) contains all finite

groups of order n and G contains Alt(n) for all n.

Turning to the “classical finitary groups”, we shall restrict the relevant

form to finite-dimensional or countably infinite dimensional subspaces of V

and embed all of the symmetric or alternating groups into G.

Symplectic Case: Any symplectic form of dimension 2n is equivalent to

the one represented by the 2n × 2n matrix z with blocks

 0 1

−1 0

 on

the diagonal and zeros elsewhere. Given a permutation matrix g = (gij) ∈

GL(n, F ), enlarge it to a 2n × 2n matrix gθ consisting of 2 × 2 blocks (hij)

where hij = 12 if gij = 1 and hij = 02 if otherwise. Then θ embeds the

permutation matrices of GL(n, F ) into GL(2n, F ) and also (gθ)T z(gθ) = z.

Thus Sym(n) embeds into Sp(2n, F ) and FSp(V, f) contains all finite groups.

Orthogonal Case: There is only one type of othogonal group of odd dimen-

sion. If F has characteristic 2, then since it is perfect (it is a subfield of F2),

we have O(2n+1, F ) ∼= Sp(2n, F ) (see Carter [3] Chapter 1), so that Sym(n)

embeds into O(2n+ 1, F ) by the symplectic case.

Suppose that F has odd characteristic. Any orthogonal form of odd
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dimension 2n+ 1 is represented by the matrix

z =


1 0 0

0 0 1n

0 1n 0

 .

There is an embedding GL(n, F )→ O(2n+ 1, F ),

g 7→


1 0 0

0 g 0

0 0 (g−1)T


and so Sym(n) embeds into O(2n+1, F ). Thus Sym(n) embeds into FO(V, f)

for all n.

Therefore, regardless of characteristic, Alt(n) embeds into Ω(V, f) for all

n, as required.

Unitary Case: We may assume that V has countably infinite dimension.

Then any Hermitian form (with respect to a field involution ι) is equivalent

to the one represented by the identity. In particular, SU(V, f) contains copies

of all the groups

SU(n, F ) =
{
x ∈ SL(n, F ) : x†x = 1

}
,

where x† = (xι)T . Now the embedding GL(n, F )→ SL(n+ 1, F ),

x 7→

 1
detx

0

0 x


takes U(n, F ) =

{
x ∈ GL(n, F ) : x†x = 1

}
into SU(n+ 1, F ). For 1

detx
0

0 x

† 1
detx

0

0 x

 = 1,
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since in this case x†x = 1 and (detx)ιdetx = det((xι)x) = 1.

Now permutation matrices satisfy x†x = 1, so Sym(n) embeds into SU(n+

1, F ). Therefore SU(V, f) contains copies of all finite groups.

Transvection Case: Let G = T (W,V ) be a transvection group with W ≤ V ∗

such that annV (W ) = 0.

Suppose that v1, . . . , vn ∈ V are linear independent vectors and ϕ1, . . . , ϕn ∈

W such that viϕi = 1 and vjϕi = 0 for j 6= i, and further that

V =
n⊕
i=1

Kvi ⊕
n⋂
i=1

kerϕi.

Choose 0 6= vn+1 ∈
⋂n
i=1 kerϕi. There is ϕ ∈ W such that vn+1ϕ = 1. Set

ϕn+1 = ϕ−
n∑
i=1

(viϕ)ϕi,∈ W.

Then vn+1ϕn+1 = vn+1ϕ = 1 and vjϕn+1 = 0 for 1 ≤ j ≤ n. Also

V =
n+1⊕
i=1

Kvi ⊕
n+1⋂
i=1

kerϕi.

This gives a recipe for constructing a copy of SL(n,K) in G. Fix n and

construct vi and ϕi as above for 1 ≤ i ≤ n. Extend v1, . . . , vn to a basis

(vi)i≥1 of V with vj ∈
⋂n
i=1 kerϕi for j > n. Let tα,ij be the transvection

v 7→ v + α(vϕi)vj where α ∈ K. Then

vktα,ij =

 vi + αvj if k = i

vk if k 6= i

So tα,ij can be realized as the n× n matrix 1n +αEij, where Eij is the n× n

matrix with (i, j)-entry α and all other entries are 0. Thus G contains a

subgroup isomorphic to SL(n,K), for every n. Since Sym(n) embeds into

SL(n+ 1, K), it follows that G contains copies of all finite groups.
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3.4 Irreducible and Transitive Finitary Groups

3.4.1 Theorem. Let G be a transitive subgroup of FSym(Ω). If G has finite

rank, then Ω is finite. Consequently any subgroup of FSym(Ω) with finite

rank has finite orbits.

There are two key examples. Let C
(n)
p be the direct product of n copies

of the cyclic group Cp where p is a prime. Then the rank of C
(n)
p is simply

its dimension as an Fp-vector space, and this is n.

Let Ω be an infinite set. The group Alt(Ω) contains copies of all finite

groups, thus it contains C
(n)
p for all n and so it must have infinite rank.

Proof. Suppose that Ω is infinite. By 1.1.2 and 1.1.3, any primitive or almost

primitive group cannot have finite rank. For such a group has an image

containing an infinite alternating group. Thus G is totally imprimitive.

Since G is locally finite, we can choose g ∈ G with prime order p. Put

∆ = suppΩ(g), a finite non-empty set. By 1.1.3 Part 2, we can choose a G-

congruence with blocks (Ωi)i∈I such that ∆ ⊆ Ω1, say. Using the transitivity

of G, there is xi ∈ G with Ω1xi = Ωi. Now for every i ∈ I, we have

suppΩ(gxi) = ∆xi ⊆ Ωi. Thus the supports of the distinct gxi are disjoint and

so the gxi commute. Furthermore, 〈gxi : i ∈ I〉 ∼= C
(I)
p . Now I is infinite, thus

by the first example preceding this proof, C
(I)
p has infinite rank. Therefore

so does G.

If G is any subgroup of FSym(Ω) with finite rank and Γ is an orbit, then

G/CG(Γ) is a transitive finitary permutation group on Γ. Hence Γ is finite

by the above argument.
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3.4.2 Theorem. Let G be an irreducible subgroup of FGL(V ) where V is an

infinite-dimensional vector space over D and D is locally finite-dimensional

over a subfield. Then

1. G has infinite rank, and

2. G generates the variety of all groups.

Proof. If G is imprimitive then it has an image isomorphic to a finitary

transitive permutation group of infinite degree (1.1.1). This image has infinite

rank by 3.4.1 and generates the variety of all groups by Neumann’s Theorem

3.1.5. Thus so does G.

So we assume that G is primitive. If 1 or 2 does not hold, then by 3.2.1,

we see that G is locally-soluble by locally-finite. Hence by 1.3.4, G is locally

finite. Now applying 3.3.3, the group G contains copies of all finite groups.

But then G must have infinite rank. Also the variety V(G) must contain all

finite groups and hence all residually finite groups by 3.1.3. The free groups

are residually finite (see, for example, [31] 6.1.9). Thus V(G) is the variety

of all groups. These contradictions finish the proof.
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Chapter 4

Irreducible and Transitive

Locally Supersoluble Groups

4.1 Results

We saw in Chapter 3 that irreducibility is a particularly strong condition

on certain infinite-dimensional finitary groups; for example, there we proved

that such an irreducible group necessarily generates the variety of all groups.

In this chapter we look at the effect of irreducibility and transitivity on

locally supersoluble finitary groups of infinite degree, extending results on

locally nilpotent groups. In [37], Suprunenko shows that a locally nilpotent

transitive finitary permutation group of infinite degree is a p-group for some

prime p. In [46], Wehrfritz proves the corresponding result for finitary skew

linear groups; namely that a locally nilpotent irreducible finitary skew linear

group of infinite dimension is a locally finite p-group for some prime p not

equal to the characteristic of the scalar division ring. We shall extend these
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results and prove:

• A locally supersoluble transitive finitary permutation group of infinite

degree is a p-group for some prime p (Theorem 4.1.2).

• A locally supersoluble irreducible finitary skew linear group of infinite

dimension over the division ring D is a locally finite p-group for some

prime p 6= charD (Theorem 4.1.3).

In either case, the groups in question are locally nilpotent.

We need to know when a finite wreath product is supersoluble. Necessary

and sufficient conditions for this were found by Durbin ([6] main theorem).

4.1.1 Theorem (Durbin). Let A and B be finite nontrivial groups and let

G = A oB. Then G is supersoluble if and only if

1. A is nilpotent,

2. B is abelian or A and B′ are nontrivial p-groups for some prime p, and

3. for each prime q dividing the order of A, the exponent of B/Oq(B)

divides q − 1, where Oq(B) is the unique maximal normal q-subgroup

of B.

4.1.2 Theorem. Let Ω be an infinite set and let G be a locally supersoluble

transitive subgroup of FSym(Ω). Then G is a p-group for some prime p.

Proof. By 1.3.1, G′ is locally nilpotent. Thus G′ ≤ η(G). Now by 1.1.6,

N = η(G) is transitive. Hence by Suprunenko’s result ([37] Theorem 1) N is

a p-group for some prime p. Since G is locally finite, we have N = Op(G).

Suppose for a contradiction that N 6= G. Pick x ∈ G of prime order q 6= p
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Case 1: q 6 |p − 1. Let X be a finitely generated subgroup of G. Now X is

contained in a subgroup Y of G generated by a finite number of elements of

N , and x. Since Y is supersoluble, Y ∩N has a Y -supersoluble series whose

factors are Cp using 1.3.2. Now x acts as an automorphism on these factors.

Since the order of AutCp is p− 1 and is not divisible by q, it follows that x

centralizes each factor in this series. Since Y = (Y ∩N)o 〈x〉, it follows that

Y is nilpotent and so is X. Thus G is locally nilpotent, a contradiction.

Case 2: q|p−1. It is sufficient to assume that G/N has order q. Let Q = 〈x〉.

Then Q ∩N = 1, so Q complements N in G, i.e. G = N oQ.

By 1.1.2 a primitive finitary permutation group of infinite degree con-

tains an infinite alternating group. By 1.1.3 an almost primitive finitary

permutation group has an image containing an infinite alternating group.

Thus primitive and almost primitive groups cannot be locally supersoluble.

Therefore G is totally imprimitive.

Set ∆ = suppΩ(Q) = suppΩ(x). By 1.1.3 there is a G-congruence of Ω

with blocks (Ωi)i∈I such that ∆ ⊆ Ω1, say. Let T =
⋂
i∈I NG(Ωi). Applying

1.1.1, the set I is infinite and G/T is a transitive subgroup of FSym(I). Since

∆ ⊆ Ω1, we have Q ≤ T and hence G/T is a p-group, because G = Op(G)Q.

Choose g ∈ G \ T such that Tg moves 1. Any cycle of Tg has length

a power of p. Without loss of generality, let (1, 2, . . . , pe) be such a cycle.

Now suppΩ(Qgi) ⊆ Ω1g
i for all integers i ≥ 0. If 0 ≤ i < j < pe then

Ω1g
i ∩ Ω1g

j = ∅ since Ω1g
i and Ω1g

j are distinct blocks. Thus elements of

Qgi commute with elements of Qgj . Hence B = Q × Qg × . . . × Qgp
e−1

is a

subgroup of G and g cyclically permutes the terms Q,Qg, . . . , Qgp
e−1

. There

is an epimorphism 〈Q, g〉 = 〈B, g〉 → Q oCpe ∼= Cq oCpe . By hypothesis, 〈Q, g〉
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is supersoluble. This contradicts 4.1.1 because here q < p and for Cq oCpe to

be supersoluble we need pe|q − 1.

In either case we get a contradiction. Therefore G = N = Op(G) is a

p-group.

The finite situation is, of course, very different. For example, Sym(3) is

a transitive supersoluble group that is not a p-group for any prime p.

Note that G and Ω in 4.1.2 are countably infinite by 1.1.3 Part 3.

4.1.3 Theorem. Let V be an infinite-dimensional vector space over the

division ring D and let G be a locally supersoluble irreducible subgroup of

FGL(V ). Then G is a locally finite p-group for some prime p 6= charD.

Proof. Again we have G′ ≤ η(G) = N and by Lemma 1.2.3, N is irreducible.

By Wehrfritz’s theorem (in [46]), N is a locally finite p-group for some prime

p 6= charD.

Let A/N be the p-primary component of the abelian group G/N . Then

A/N is locally finite and so A is a locally finite normal p-subgroup of G.

Therefore A is locally nilpotent and by the maximality of N , we have N = A.

Thus N = Op(G). Once we have shown that G is a p-group, then the local

finiteness follows. For G/N is then a periodic abelian group and thus is

locally finite. Since also N is locally finite, G is locally finite.

Suppose for a contradiction that N 6= G. By 1.3.4, G is imprimi-

tive. Choose any proper G-system of imprimitivity (Vω)ω∈Ω of V . Let

T =
⋂
ω∈Ω NG(Vω). Using 1.2.1, Ω is an infinite set and G/T is isomor-

phic to a transitive subgroup of FSym(Ω). By 4.1.2, G/T is an r-group for

some prime r. Now NT/T ∼= N/(N ∩ T ) is both a p-group and an r-group.
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Thus p = r or N = N ∩ T . However, if N = N ∩ T then G′ ≤ N ≤ T and

then G/T is abelian, contradicting 1.1.5. Therefore G/T is a p-group.

Let x be an element of G of order q where q = ∞ or p 6= q is a prime.

Let Q = 〈x〉. Clearly N ∩Q = 1 so N oQ = NQ ≤ G.

Case 1: q = ∞ and p = 2, or q < ∞ and q 6 |p − 1. Let X be a finitely

generated subgroup of G. Now we can find a subgroup Y of G containing

X which is generated by x together with finitely many elements of N . The

subgroup Y is supersoluble, so Y ∩ N has a Y -supersoluble series whose

factors are Cp. Also x acts as an automorphism on these factors. In the

case where q is infinite and p = 2, we note that AutCp is trivial. Thus x

centralizes the Y -supersoluble series of Y ∩ N , so that Y = (Y ∩ N) o 〈x〉

is nilpotent. The case where q is finite and q 6 |p − 1 is handled as in 4.1.2.

Either way, we conclude that G is locally nilpotent, a contradiction.

Case 2: q =∞ and p 6= 2, or q <∞ and q|p− 1. Note that for these values,

Cq oCpe is never supersoluble. When q is finite, this is immediate from 4.1.1.

The infinite case holds because there is an epimorphism C∞ oCpe → C2 oCpe .

Now Q acts non-trivially on only finitely many of the Vω, say Vω1 , Vω2 , . . . ,

Vωm . Put ∆ = {ω1, . . . , ωm}. Since G/T must be totally imprimitive (by 1.1.2

and 1.1.3 Part 1), there is a G-congruence with blocks (Ωi)i∈I with ∆ ⊆ Ω1

by 1.1.3. Set S =
⋂
i∈I NG(Ωi). Then by 1.1.1, G/S is a transitive subgroup

of FSym(I).

Let g ∈ G be such that Sg moves 1. Then Sg contains a cycle (1, 2, . . . , pe)

for some integer e ≥ 1. Put Wi =
⊕

ω∈Ωi
Vω. Now Qgi centralizes Wj when

j 6= i. Thus [Qgi , Qgj ] = 1 for 0 ≤ i < j < pe. As in the proof of 4.1.2, there

is an epimorphism 〈Q, g〉 → Cq oCpe and thus 〈Q, g〉 cannot be supersoluble,
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a contradiction.

The finite-dimensional skew linear situation is much different; for any

locally supersoluble torsion-free group has a faithful irreducible skew linear

representation of degree 1 by [34] 1.4.8 and there are such groups which are

not locally nilpotent (for example 〈x, y : xy = x−1〉 = C∞ o C∞).

4.1.4 Corollary. Let G be an irreducible locally supersoluble subgroup of

FGL(V ) where V has infinite-dimension over D. Then dimDV is countable,

G is a countably infinite locally finite p-group, G is isomorphic to a completely

reducible monomial finitary linear group over any algebraically closed field of

characteristic not p and G embeds into GL(m,D) oΩS where Ω is a countably

infinite set, m is some natural number and S is a transitive p-subgroup of

FSym(Ω).

Proof. Since G is locally nilpotent by 4.1.3, all this follows from the theorem

in [46].

4.2 Some General Remarks

1. If one restricts D to being a field in 4.1.3 then there is a simpler proof.

By 2.2.5, G has an abelian normal subgroup A such that G/A is a transitive

finitary permutation group of infinite degree. Using 4.1.2, G/A is necessarily

a q-group and using Wehrfritz’s result ([46] Theorem), η(G) is a p-group for

primes q, p where p 6= charD. Now A ≤ η(G) and since η(G) is irreducible

(it contains G′), A 6= η(G) by 1.3.3. Thus p = q as required.

2. A finitary p-group over D where charD = p > 0 is a stability group. Now
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stability groups cannot act irreducibly unless they are trivial (see Theorem

1.2.6 Part 2), so the prime p cannot be charD in 4.1.3.

3. Such groups in 4.1.2 and 4.1.3 exist. Let W = Wr(N,<)Cp be the wreath

power of the cyclic group of prime order p over the natural numbers with

their natural ordering. Then W is a transitive finitary permutation group

on N. Let H be any transitive finitary permutation p-group on a countably

infinite set Ω and let F be an algebraically closed field of characteristic not

p. Then A = Cp is a subgroup of F ∗ = GL(1, F ). Let G = A oΩ H. The base

group of G acts componentwise on the space of row vectors V =
⊕

ω∈Ω Fω,

where Fω is an isomorphic copy of F , and H permutes the components Fω

in the obvious way. Moreover, this action is finitary and irreducible, i.e. G

is an irreducible subgroup of FGL(V ).

4. In [46], a crucial step in the proof that a locally nilpotent infinite-

dimensional irreducible finitary skew linear group is a p-group, is to show

that the group is periodic. This is done using the following result:

4.2.1 Lemma ([46] Lemma 4). Let G be a locally nilpotent homogeneous

subgroup of FGL(V ) and let g ∈ G be an element of infinite order. Then

[V, g] = V and CV (g) = 0.

This result does not extend to locally supersoluble groups, even when the

group is linear and supersoluble. For let,

G =

〈
g =

 2 0

0 1

 ,

 0 1

1 0

〉 ∼= C∞ o C2.

Then G is irreducible as a subgroup of GL(2,C), is supersoluble and g has

infinite order. But if V = C⊕ C, then [V, g] < V and 0 < CV (g).

51



However, we have the following:

4.2.2 Proposition. Let G be a non-trivial locally supersoluble homogeneous

subgroup of GL(n,D) and let V = D(n) be the space of n-dimensional row

vectors over D. Then there is x ∈ G with [V, x] = V and CV (x) = 0.

The proof is essentially that of [46] Lemma 5 but we include it here.

Proof. There is a finitely generated subgroup X of G which is homogeneous,

by [41] 8b. Now X is supersoluble, so it has a non-trivial cyclic normal

subgroup generated by x, say. Choose any D-X irreducible submodule W of

V . Then X must act faithfully on W since X is homogeneous. Thus [W,x]

is non-trivial. Since 〈x〉 � X, it follows that [W,x] is a D-X submodule of

W and hence W = [W,x]. Using the homogeneity of X, we get [V, x] = V .

The last part follows because CV (x) is the kernel of the map V → [V, x],

v 7→ [v, x].

5. The corollary in [46] extends partially:

4.2.3 Proposition. Suppose D is a division ring of characteristic p ≥ 0 that

is locally finite-dimensional over a subfield. Let G be a completely reducible

locally supersoluble subgroup of FGL(V ) and let X be a finitely generated

subgroup of G. Then X is completely reducible under any one of the following

circumstances:

1. V is a direct sum of infinite-dimensional D-G irreducibles,

2. the characteristic p is 0, or

3. p 6= 0 and X has no normal subgroup of index p.
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Proof. We may assume that G is irreducible. If dimD(V ) =∞ then by 4.1.3

and the corollary in [46], X is completely reducible. Thus assume that V has

finite D-dimension and set N = η(G).

By 2.3.3, G/N is periodic abelian. Now X/(X ∩N) ∼= XN/N is finitely

generated periodic abelian and thus is finite. By a famous theorem of

Schreier, X ∩ N is a finitely generated subgroup of N . By Theorem 1.2.2,

N is completely reducible and so by the corollary in [46] again, X ∩ N is

completely reducible. The result now follows using the proof of Maschke’s

theorem (see [34] 1.1.3).

The restrictions 1-3 in the statement of 4.2.3 are necessary. Let p be a

prime. By a theorem of Dirichlet (see for example [12] Theorem 15) there is

a prime q for which p divides q−1. Choose F to be any field of characteristic

p containing a primitive q-th root of unity α and let h = (1, 2, ..., p). Put

A = 〈α〉 ≤ F ∗, H = 〈h〉 and G = A o H. Then G may be regarded as an

irreducible subgroup of GL(p, F ). Using 4.1.1, G is supersoluble. Now in

EndF (V ), (hi − 1)p = hip − 1 = 0 for any integer i, so H is unipotent and

therefore is not completely reducible.

If K is any irreducible locally nilpotent subgroup of FGL(W ) where W

has infinite dimension over F , then G×K is a completely reducible locally su-

persoluble subgroup of FGL(V ⊕W ) which has a finitely generated subgroup

that is not completely reducible.
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4.3 Appendix

The results of this chapter were submitted as a paper to Archiv der Math-

ematik. The anonymous referee made some suggestions which I used in the

final edition. The following work appears in [25].

4.3.1 Theorem. Let G be a locally-nilpotent by abelian group.

1. If G is a transitive finitary permutation group of infinite degree then G

is a p-group for some prime p.

2. If G is an irreducible finitary skew linear group of infinite dimension

over the division ring D, then G is a locally finite p-group for some

prime p 6= charD.

Clearly Theorems 4.1.2 and 4.1.3 follow from 4.3.1.

4.3.2 Corollary. Let G be either a transitive finitary permutation group of

infinite degree or an irreducible finitary skew linear group of infinite dimen-

sion over a division ring D which is locally finite-dimensional over a subfield.

If G/η(G) satisfies a non-trivial law, then G is a locally finite p-group for

some prime p 6= charD.

We shall prove Corollary 4.3.2 first. In either case η(G) 6= 1, for otherwise

G satisfies a non-trivial law and this is not possible by [20] Theorem 1 and

Theorem 3.4.2. In the finitary permutation case, by 1.1.6 η(G) is transitive

and so by 1.1.7, we have G′ ≤ η(G). In the finitary skew linear case, η(G)

is irreducible using 1.2.3 and by 1.3.4 and 1.2.4, G′ ≤ η(G). Therefore G is

locally-nilpotent by abelian in either case. To finish we apply 4.3.1.

We now head towards a proof of 4.3.1.
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4.3.3 Lemma. Let G be a transitive subgroup of FSym(Ω) where |Ω| = ∞

and suppose that G′ is a p-group. Then G is a p-group.

Proof. Let g ∈ G and put Γ = suppΩ(g). By Neumann’s Lemma 1.1.4, there

is x ∈ G with Γ ∩ Γx = ∅. Now suppΩ(g−1) = Γ and suppΩ(gx) = Γx, so

that g−1 and gx commute. Thus the commutator [g, x] = g−1gx has the same

order as that of g. Since G′ is a p-group, it follows that g has order a power

of p, as required.

4.3.4 Lemma. Let G be an irreducible subgroup of FGL(V ) where dimDV =

∞ and suppose that G′ is a locally finite p-group. Then G is a locally finite

p-group.

Proof. By Theorem 1.3.4, G is imprimitive. Choose a proper G-system of

imprimitivity (Vω)ω∈Ω of V . Necessarily Ω is infinite and the action of G

on this system induces a transitive finitary action on Ω. Let g ∈ G. Then

Γ = {ω ∈ Ω|g /∈ CG(Vω)} is a finite set. By 1.1.4, there is x ∈ G with

Γ ∩ Γx = ∅. Now g−1 centralizes all the Vω with ω /∈ Γ and gx centralizes all

the Vω with ω /∈ Γx. Thus, as in 4.3.3, [g, x] has the same order as g and it

follows that G is a p-group. Since G′ is locally finite and G/G′ is periodic

abelian, G is locally finite.

Proof of the Theorem. Now G′ is locally nilpotent. In the finitary permu-

tation case, G′ is transitive by 1.1.6 and in the finitary skew linear case, G′

is irreducible by 1.2.3. Thus by either Suprunenko’s Theorem or Wehrfritz’s

Theorem, G′ is a locally finite p-group. The Theorem follows from 4.3.3 and

4.3.4.

Also the following is of interest.
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4.3.5 Remark. Let G be a locally finite p-group.

1. If G is a transitive subgroup of W = FSym(Ω) where Ω is infinite, then

NW (G) is a p-group for some prime p.

2. If G is an irreducible subgroup of W = FGL(V ) where V has infinite

dimension, then NW (G) is a locally finite p-group for some prime p.

Proof. Let x ∈ NW (G) and H = 〈G, x〉. Certainly H ′ ≤ G�H. Now apply

Lemmas 4.3.3 and 4.3.4 to H in each case.

Paul Flavell has pointed out to me an easier way to finish the proofs of 4.1.2

and 4.1.3. In 4.1.2, case 2 can be finished by using the fact that B∩Op(G) =

1. This forces B to be cyclic and it clearly isn’t. A similar argument can be

used in 4.1.3.
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Chapter 5

Height

5.1 Paraheight

In [38], Wehrfritz defines a supersoluble analogue of central height called

paraheight. Let G be a group and let A be a G-module. Then A is said to be

G-complete if every subgroup of A (as an abelian group) is a G-submodule

of A. Abelian normal sections of G are G-modules via conjugation. Clearly,

an abelian normal subgroup A of G is G-complete if and only if all its sub-

groups are normal in G. Thus, completeness in G can be thought of as a

generalization of centrality in G.

Let N �G. A G-paraseries of N of height β is an ascending series of N

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ = N

such that each Nα � G, each Nα+1/Nα is abelian and G-complete. If N

possesses a G-paraseries then the G-paraheight of N is the smallest ordinal

β for which a G-paraseries of N of height β exists. Note that a G-paraseries
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is sometimes called a “parasoluble series” (cf. [13]).

Using the fact that every subgroup of a cyclic group is characteristic, it

is easy to see that any G-hypercyclic series is a G-paraseries. In particular,

the subgroup λ(G) always has a G-paraseries. The G-paraheight of λ(G) is

called the paraheight of G.

Wehrfritz introduced paraheight in order to generalize the work of Gru-

enberg on centrality in linear groups (see [9]). Gruenberg proved that the

central height of a linear group is strictly less than ω2. Wehrfritz proved the

following for paraheight:

5.1.1 Theorem (Wehrfritz, [38]). Let G be a linear group of degree n.

Then G has paraheight at most ω + blog2 n!c.

It is still unknown as to whether 5.1.1 gives the correct bound. Banu

([1] page 64) has shown that if G is a hypercyclic linear group of degree n

then G has paraheight ≤ ω + b1
2
(n + 1)c and that this bound is attained

when n is a power of 2 bigger than 4. Stewart, in his PhD thesis [35],

examined paraheight in skew linear groups and found that there is no bound

on paraheights of skew linear groups.

A natural thing to investigate is what happens in the finitary linear case.

Gruenberg’s theorem on linear groups extends to finitary linear groups pro-

vided one ignores unipotence:

5.1.2 Theorem (Wehrfritz, [45]). A finitary linear group has central

height less than or equal to ω2 modulo its unipotent radical.

One technique in computing paraheights of hypercyclic groups is the fol-

lowing:
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5.1.3 Lemma. Let G be a hypercyclic group and let α be an ordinal. Let p

be the paraheight of G. If p = α + 1 then G′ has G-paraheight α. If G′ has

G-paraheight α then α ≤ p ≤ α+ 1, and p = α+ 1 if α is not a limit ordinal

or zero.

The group G = C3∞ oC3 has paraheight ω+ 1 and G′ has G-paraheight ω

(see [39] proof of 11.25 on page 171). We shall see that the direct power P of

ℵ0 copies of Sym(3) has paraheight ω and its commutator has P -paraheight

ω also. Thus 5.1.3 is the best we can do.

In part of the above lemma, it is an implicit assumption that G is imper-

fect. If G is a perfect hypercyclic group then G is hypercentral. In this case,

it follows from Grün’s Lemma (see [30] Part I page 48) that G is trivial.

Proof. If G′ has G-paraheight α, then G certainly has paraheight ≤ α + 1.

Suppose that

1 = G0 < G1 < G2 < . . . < Gα < Gα+1 = G

is a G-paraseries of G. Then G′ ≤ Gα. Consider the series

1 = G0 ∩G′ ≤ G1 ∩G′ ≤ . . . ≤ Gα ∩G′ = G′.

The terms of this series are normal in G and the series has abelian factors.

Let Gβ∩G′ ≤ H ≤ Gβ+1∩G′ for an ordinal β < α. Now Gβ ≤ GβH ≤ Gβ+1,

so GβH �G. Also

H = (G′ ∩Gβ)H = G′ ∩HKβ �G.

This argument shows that the factors
Gβ+1∩G′
Gβ∩G′

are G-complete and thus G′

has G-paraheight ≤ α.
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Now if G′ has G-paraheight < α then G has paraheight < α+1. Therefore

G has paraheight α + 1 implies that G′ has G-paraheight exactly α. If α is

not a limit ordinal or zero, then G cannot have paraheight α; otherwise, G′

has G-paraheight α− 1.

Finitary linear groups can contain very large direct products and para-

height does not respect direct products.

5.1.4 Example. Let δ be any cardinal and let Gδ be the direct product of δ

copies of Sym(3). Then the paraheight of Gδ is δ+ 1 if δ is finite, and is δ if

δ is infinite. Also Gδ is a finitary linear group with U(Gδ) = 1. In particular,

Gℵ1 is a finitary linear group of paraheight > ω2.

Proof. We show that P = (Gδ)
′ has Gδ-paraheight δ. Now in this case, P is

the direct product of cyclic groups of order 3. Let C be a G-complete normal

subgroup of P . If x = (xε)ε≤δ ∈ C \ 1 with xε1 6= 1 6= xε2 for some ε1 < ε2

and g ∈ G is an involution in the ε1th copy of Sym(3), then

xg = (. . . , x−1
ε1
, . . . , xε2 , . . .) /∈ 〈x〉 .

Thus C must be one of the cyclic direct factors of P .

Given a G-paraseries

1 = N0 ≤ N1 ≤ . . . ≤ Nα

contained in P for ordinal α ≥ 1, we want to produce another term Nα+1 ≤ P

to extend the G-paraseries. By induction Nα is a product of direct factors

of P with each Nβ+1/Nβ cyclic of order 3 for β < α. Consider G/Nα. By

considering the action of G/Nα on P/Nα, the only candidate for Nα+1 is
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a direct product of one more of the direct factors of P with Nα. Hence

Nα+1/Nα is cyclic of order 3.

For limit ordinals α, the only possibility for a term in an ascending series

is the union ⋃
β<α

Nβ

which is clearly a direct product of direct factors of P .

This induction stops with Nδ = P . Thus P has G-paraheight exactly δ.

By 5.1.3, Gδ has paraheight δ + 1 for finite δ.

In the case where δ is infinite, Gδ has paraheight at least δ. Also by

considering the following Gδ-paraseries we see that Gδ has paraheight exactly

δ:

1 ≤ C3 × 1× 1× . . . ≤ Sym(3)× C3 × 1× . . . ≤×
ℵ0

Sym(3) ≤

×
ℵ0

Sym(3)× C3 ≤×
ℵ0

Sym(3)× Sym(3)× C3 ≤ . . . ≤ Gδ.

That Gδ is a unipotent-free finitary linear group is clear; Sym(3) is a

unipotent-free linear group over C and so G is finitary linear and unipotent-

free over C in the natural way.

In contrast to Example 5.1.4, any direct power of D8 has central height

and paraheight 2. One feels that any measure of supersolubility should also

be 2 in the case of Example 5.1.4.

There is no general canonical G-paraseries of a group G which contains

all G-paraseries. For example, if

G = Q8 =
〈
x, y : x4 = y4 = 1, x2 = y2, xy = (yx)−1

〉
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then both 1 < 〈x〉 < G and 1 < 〈y〉 < G are G-paraseries. The only

series of G containing both of these is 1 < G and this certainly isn’t a G-

paraseries. Hill defines the notion of an “upper paraseries” (see [13] page 44

where this is called an “upper parasoluble series”). Both series 1 < 〈x〉 < G

and 1 < 〈y〉 < G are upper paraseries in his sense; it is the lack of uniqueness

of these upper paraseries that is the problem.

It is natural to ask whether there is a type of series which measures the

supersoluble height of groups and such that every group has a canonical

supremum for these series (like the upper central series being a canonical

supremum for all central series).

In this chapter, we shall present two alternatives to paraheight. The

first alternative works with respect to direct products and works for finitary

linear groups (again, provided one ignores unipotence). It does seem slightly

artificial. The second alternative gives a generalization of the upper central

series.

5.2 Weak paraheight

In this section, we weaken the definition of paraheight in an attempt to get

a reasonable result for finitary linear groups.

Let N �G. A G-weak-paraseries of N of height β is an ascending series

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ = N

of normal subgroups Nα of G, such that each factor Nα+1/Nα is abelian and,

as a G-module, embeds into a direct sum of G-complete modules.
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Suppose that we have such a series

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . Nβ = N

and Nα+1/Nα ↪→
⊕

j∈IMj via the G-map ϕ where each Mj is a G-complete

module. Let πi be the natural projection
⊕

j∈IMj → Mi. We can choose

Mi to be the images of M = Nα+1/Nα under ϕπi. Now Mϕπi ≤ Mi and

furthermore Mϕπi is G-complete. The map

ψ : M →
⊕
i∈I

Mϕπi, m 7→ (mϕπi)i∈I

is a G-module homomorphism with kernel

kerψ = {x ∈M : xϕπi = 1, for all i ∈ I}

= {x ∈M : xϕ ∈ ∩i∈I kerπi = 1}

= kerϕ.

Thus M embeds into
⊕

i∈IMϕπi.

The least ordinal β for which a G-weak-paraseries of N of height β exists,

is called the G-weak-paraheight of N .

Trivially, a G-paraseries is a G-weak-paraseries. Hence any G-hypercyclic

normal subgroup of G has a G-weak-paraseries. In fact, the converse is true;

any direct sum of G-complete modules is G-hypercyclic, so any factor of a

G-weak-paraseries is G-hypercyclic.

Now λ(G) has a G-weak-paraseries. The G-weak-paraheight of λ(G) is

called the weak paraheight of G. Clearly, the weak paraheight of G is less

than or equal to the paraheight of G.

It is easy to see that in the case of Example 5.1.4, each group Gδ has weak

paraheight 2; in that case (Gδ)
′ is a direct product of Gδ-complete modules.
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We list a few basic properties of weak paraseries.

5.2.1 Lemma. Let N � G have a G-weak-paraseries of length β. Suppose

that K �G and H ≤ G. Then:

1. K ∩N has a G-weak-paraseries of length β;

2. H ∩N has an H-weak-paraseries of length β;

Proof. Let

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ = N

be a G-weak-paraseries of length β.

1. Let Kα = K ∩Nα,�G. Then

Kα+1

Kα

∼=G
(Nα+1 ∩K)Nα

Nα

.

Thus Kα+1/Kα is abelian and embeds into a direct sum of G-complete mod-

ules.

2. The proof of 2 is similar to that of 1.

5.2.2 Lemma. Let (Gi)i∈I be a family of groups of weak paraheight at most

β. Then their direct product G has weak paraheight at most β.

Proof. For each i ∈ I, let

1 = N
[i]
0 ≤ N

[i]
1 ≤ . . . ≤ N [i]

α ≤ . . . ≤ N
[i]
β = λ(Gi)

be a Gi-weak-paraseries for λ(Gi). These are G-weak-paraseries.

64



Each factor of the series

1 =×
i∈I

N
[i]
0 ≤×

i∈I
N

[i]
1 ≤ . . . ≤×

i∈I
N [i]
α ≤ . . . ≤×

i∈I
N

[i]
β =×

i∈I
λ(Gi)

is certainly abelian.

We also have the following equality:

×
i∈I

λ(Gi) = λ(G).

(Certainly, each λ(Gi) is G-hypercyclic. To see the converse, consider the

projections of λ(G) into the Gi.)

Now each N
[i]
α+1/N

[i]
α embeds into a direct sum of G-complete modules, so

×
i∈I

N
[i]
α+1/N

[i]
α embeds into a direct sum of G-complete modules. The result

follows.

Using these properties, we can prove the following:

5.2.3 Theorem. Let G be a finitary linear group. Then G/U(G) has weak

paraheight at most ω2.

Proof. We may assume that U(G) = 1 and further that G is completely

reducible. Decompose V into a direct sum

V =
⊕
i∈I

Vi

of irreducible FG-submodules Vi. Now consider the homomorphism

ϕ : G→
∏
i∈I

G

CG(Vi)
; g 7→ (CG(Vi)g)i∈I .

Using the finitariness of G, the image G of G under ϕ must lie inside P =

×
i∈I

G
CG(Vi)

; that is to say each g ∈ G lies in all but finitely many of the CG(Vi).

Also the kernel of ϕ is
⋂
i∈I CG(Vi) = 1.
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Now λ(G) is the image of λ(G) under ϕ. Also x ∈ λ(G) if and only if

(CG(Vi)x)i∈I ∈ λ(G). Let x ∈ λ(G). Then for all i ∈ I, we have CG(Vi)x ∈

λ(G/CG(Vi)). Thus λ(G) ≤ λ(P ).

The subgroup λ(P ) ∩ G is a G-hypercyclic subgroup of G so it follows

that

λ(P ) ∩G = λ(G).

Hence by 5.2.1 Part 2, if P has weak paraheight ≤ ω2 then G, and thus G,

has weak paraheight ≤ ω2. So it remains to show that P has weak paraheight

≤ ω2.

Let H be an irreducible finitary linear group. Now if H has finite dimen-

sion, then by Wehrfritz’s result 5.1.1, H has (weak) paraheight < ω2. If H

has infinite dimension, it contains no cyclic normal subgroups (see 2.2.1), so

has zero (weak) paraheight.

Now each G/CG(Vi) acts faithfully, linearly and irreducibly on Vi. By

5.2.2, P has weak paraheight at most ω2. The result follows.

We conclude this section with some open questions.

1. Is ω + b1
2
(n + 1)c the correct bound for weak paraheight of hypercyclic

linear groups of degree n?

2. Let D be a locally finite-dimensional division algebra. Is the weak para-

height of a skew linear group over D of degree n bounded in terms of n? If

so, the proof of Theorem 5.2.3 should work immediately to obtain a bound

for unipotent-free finitary skew linear groups over D.
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5.3 The Lambda series

In this section, we look at a different type of series that measures supersolu-

bility within groups.

Let G be a group. We define a sequence of subgroups λα(G) as follows.

Let λ0(G) = 1, and given λα(G) for any ordinal α, define λα+1(G) to be such

that λα+1(G)/λα(G) is the subgroup generated by all cyclic normal subgroups

of G/λα(G). At limit ordinals β, we put λβ(G) =
⋃
α<β λα(G). In particular,

λ1(G) is generated by the cyclic normal subgroups of G.

Each subgroup λα(G) is characteristic in G and for each ordinal α,

λα+1(G)/λα(G) = λ1(G/λα(G)).

Also, each λα(G) is G-hypercyclic and as such is contained in λ(G).

Now for some ordinal β0, we have λβ0(G) = λβ0+1(G); for example, take

β0 to be any cardinal greater than |G|. Thus there is a least ordinal β for

which λβ(G) = λβ+1(G), which we call the cyclic height of G. It follows that

λ(G) = λβ(G); if not, we can choose a non-trivial cyclic normal subgroup of

G/λβ(G) and hence λβ+1(G) > λβ(G).

The series

1 = λ0(G) ≤ λ1(G) ≤ . . . ≤ λα(G) ≤ . . . ≤ λβ(G) = λ(G)

is the supremum for series whose factors are generated by certain cyclic

normal subgroups. We make this precise.

5.3.1 Proposition. Let N �G and suppose we have an ascending series

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ = N
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where each Nα �G and each Nα+1/Nα is generated by some (but not neces-

sarily all) cyclic normal subgroups of G/Nα. For every ordinal α, we have

Nα ≤ λα(G).

Proof. We prove this result using transfinite induction. Clearly if α = 0 then

the result is true. If γ is a limit ordinal and Nα ≤ λα(G) for every α < γ

then Nγ =
⋃
α<γ Nα ≤

⋃
α<γ λα(G) = λγ(G).

Now suppose that for α, Nα ≤ λα(G). Pick x ∈ Nα+1 for which 〈Nαx〉�

G/Nα. Then 〈Nα, x〉 � G, so that 〈x〉λα(G) = 〈Nα, x〉λα(G) � G. Con-

sequently 〈λα(G)x〉 � G/λα(G). Therefore x ∈ λα+1(G). It follows that

Nα+1 ≤ λα+1(G).

We shall call the following series the Lambda series of G.

λ0(G) ≤ λ1(G) ≤ . . . ≤ λ(G).

In [50] Chapter 1, Section 7, the above series is called the ascending weakly

central series of G. Series of the type in 5.3.1 are called weakly central and

5.3.1 appears as Theorem 7.12.

If N is a G-complete normal subgroup of G, then N is generated by cyclic

normal subgroups of G. Thus we have the following:

5.3.2 Corollary. If

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ

is a G-paraseries, then Nα ≤ λα(G) for each ordinal α. In particular, the

cyclic height of G is less than or equal to the paraheight of G. Also,

ζα(G) ≤ λα(G)
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for every ordinal α. Thus, if G is hypercentral of central height α, then G is

hypercyclic of cyclic height ≤ α.

So, at first glance, the Lambda series of a group seems to play a rôle

similar to that of the upper central series. Before discussing how the Lambda

series of a group relates to the Lambda series of its subgroups, quotients and

similar derivatives, we list some properties of the series itself.

5.3.3 Proposition. The series

1 = λ0(G) ≤ λ1(G) ≤ . . . ≤ λ(G)

is G′-hypercentral. Furthermore, for each ordinal α,

λα(G) ∩G′ ≤ ζα(G′).

Proof. It is enough to prove that λ1(G) is G′-central. Let x be a element of

G for which 〈x〉 � G. Now Aut(〈x〉) is an abelian group and so if y, z ∈ G

then xyz = xzy. In other words, each commutator [y, z] centralizes x and

hence [G′, λ1(G)] = 1.

Thus the 2nd term in the lower central series of λ1(G) is trivial since

γ3(λ1(G)) = [λ1(G)′, λ1(G)] ≤ [G′, λ1(G)] = 1.

In other words:

5.3.4 Corollary ([50] Chapter 1, Theorem 7.11). Let G be any group.

Then λ1(G) is nilpotent of class at most 2.

The subgroup λ1(G) need not be abelian. For example, take G = Q8. Every

subgroup of G is normal, so consequently λ1(G) = G. Thus the bound in
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5.3.4 is the best possible. This is rather unfortunate; in studying solubility

and related conditions, we would really like our building blocks to be the

abelian groups. However, all is not lost:

5.3.5 Lemma. Let G be a group. The derived subgroup (λ1(G))′ is abelian

and is generated by cyclic normal subgroups of G.

Proof. This follows at once since

(λ1(G))′ = 〈[x, y] : 〈x〉 , 〈y〉�G〉 ,

and since λ1(G) is nilpotent of class ≤ 2.

In particular, λ(G) has an ascending G-series

1 = N0 ≤ N1 ≤ . . . ≤ Nα ≤ . . . ≤ Nβ = λ(G)

such that each factor Nα+1/Nα is abelian and generated by some of the cyclic

normal subgroups of G/Nα. If β is the smallest ordinal for which one of these

series exists, we say that β is the abelianized cyclic height of G.

In general, there is no unique supremum for these abelianized series within

a given group. The group Q8 gives an example of this, as it did for paraseries.

The λ1 operator respects direct products, like the ζ1 operator.

5.3.6 Proposition. Let (Gi)i∈I be a family of groups. Then

λ1(×
i∈I

Gi) =×
i∈I

λ1(Gi).

Proof. Let x ∈ Gi be such that 〈x〉�Gi. Then 〈x〉�G and x ∈ λ1(G). Thus

each λ1(Gi) ≤ λ1(G). Now pick y ∈ G with 〈y〉�G. Let πi : G→ Gi be the

natural projection. Since y = (yπi)i∈I , we have y ∈×
i∈I

λ1(Gi).
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Using a similar method to the above, one can show that

λ1(
∏
i∈I

Gi) ≤
∏
i∈I

λ1(Gi).

However the reverse inclusion does not necessarily hold - to see this, let

G =
∏
ℵ0

Sym(3). Now any cyclic normal subgroup of G must be the cyclic

group of order 3 in one of the direct factors Sym(3) of G. It follows that

λ1(G) =×
ℵ0

λ1(Sym(3)) 6=
∏
ℵ0
λ1(Sym(3)).

The Lambda series behaves well with regard to images.

5.3.7 Lemma. Let G be a group and let N �G. Then for every ordinal α,

λα(G)N/N ≤ λα(G/N).

Proof. Given an ordinal α, consider λα+1(G)N/N . We have

λα+1(G)N/N

λα(G)N/N
= 〈(λα(G)N/N)Nx : 〈x〉�G〉 .

Thus we can apply 5.3.1 to the series

1 =
λ0(G)N

N
≤ λ1(G)N

N
≤ . . . ≤ λα(G)N

N
≤ . . . ≤ λ(G)N

N

and get λα(G)N/N ≤ λα(G/N) for every ordinal α.

The Lambda series does not behave as well with respect to subgroups.

5.3.8 Example. There is a finite supersoluble group G with a normal sub-

group H �G such that G has cyclic height 1 but H has cyclic height 2.

Proof. Let G be the following group:

G =
〈
x, y, z|x4 = y4 = z4 = 1, x2 = y2 = z2, xy = x−1, xz = x, yz = y

〉
.
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Premultiplying xy = yx−1 by x2 gives x−1y = x2yx−1 = y2yx−1 = y−1x−1.

Thus yx = y−1x−1x = y−1. Thus in G, x inverts y. Since z centralizes y,

〈y〉�G.

From the relations, z centralizes x and y inverts it so that 〈x〉�G. Also

x and y centralize z so that 〈z〉�G. Thus λ1(G) = G.

Let H = 〈x, h = yz〉. Clearly H is a normal subgroup of G. Also H is

dihedral of order 8. (For x has order 4, h has order 2 and xh = xyz = x−z =

x−1.) A non-abelian dihedral group has cyclic height 2.

However this example shows that the bound in the next result is the

correct one.

5.3.9 Proposition. Let G be any group and H be a normal subgroup of G.

Then λ1(G) ∩H ≤ λ2(H).

Proof. If 〈x〉�G then [x,H] ≤ 〈x〉 ∩H. Thus [x,H] is cyclic and normal in

H so that [λ1(G), H] ≤ λ1(H).

Now [λ1(G) ∩ H,H] ≤ [λ1(G), H], so that (λ1(G) ∩ H)/[λ1(G), H] is

central in H/[λ1(G), H] and, as such, is generated by cyclic normal subgroups

of H/[λ1(G), H]. Hence λ1(G) ∩H ≤ λ2(H) by 5.3.1.

We would like to be able to prove that in a unipotent-free finitary linear

group G, we have λ(G) = λω2(G), or at least something similar. Of course,

this result holds for linear groups (without the unipotence restriction) by

Wehrfritz’s result on paraheight. In order to do the general case, it seems

that one has to be able to relate the cyclic height of G to that of subgroups

of G. If one could prove that if H ≤ G, if β is a limit ordinal or is 0, and n
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is a natural number, there is a natural number m such that

λβ+n(G) ∩H ≤ λβ+m(H)

then this would be enough to obtain a proof of the above. We leave this

problem as two open questions.

3. Is it possible to relate the Lambda series of G to the Lambda series of

subgroups of G?

4. Let G be a finitary linear group (or a finitary skew linear group over a

locally finite-dimensional division algebra) with U(G) = 1. Is it true that

the cyclic height of G is at most ω2? If not, is there a bound?

We conclude this chapter by looking at the Lambda series in linear groups.

5.3.10 Proposition. There is no hypercyclic linear group of cyclic height

exactly ω.

Proof. Let G be a linear group such that G = λω(G) =
⋃
i∈N λi(G). We shall

show that G has finite cyclic height. By [39] Corollary 11.4, the unipotent

radical of G has finite G-paraheight and so by Corollary 5.3.2 it is contained

in λn(G) for some natural number n. By 1.2.6, we may suppose that G is

completely reducible.

Now by [39] Theorem 1.14, G is abelian-by-finite (it is monomial over the

algebraic closure of the ground field and monomial linear groups are abelian-

by-finite). Thus G = 〈A, x1, . . . , xm〉 for some abelian normal subgroup A

and some x1, . . . , xm ∈ G. But the xi all lie in finite-indexed terms of the

Lambda series. There is a natural number k such that λk(G) contains all the

xi. Hence G = Aλk(G), so that G/λk(G) is abelian and G = λk+1(G).
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However, there are linear groups with cyclic height exactly ω. Before

investigating this, we note the following examples.

5.3.11 Example. The group

G =
〈
(x, y), g : x, y ∈ C3∞ , g

3 = 1, (x, y)g = (y−1, y−1x)
〉

= (C3∞×C3∞)oC3

has (abelianized) cyclic height exactly ω + 1 and λω(G) is

B = {(x, y) : x, y ∈ C3∞} .

Proof. We show first that every cyclic normal subgroup of G lies in B.

Suppose that x, y ∈ C3∞ . If 〈g2(x, y)〉 � G then 〈g(y, x−1y)〉 � G, since

(g2(x, y))2 = g(y, x−1y). Because the order of g is 3, it is enough to consider

elements of the form g(x, y).

Note that

(g(x, y)3) = g3(x, y)g
2

(x, y)g(x, y)

= (x−1y, x−1yy−1)(y−1, y−1x)(x, y)

= 1.

So the only non-trivial powers of g(x, y) are g(x, y) itself and (g(x, y))2 =

g2(y−1x, x). If 〈g(x, y)〉�G and 1 6= z ∈ C3∞ then

(g(x, y))(z,1) = g(xz, yz−1)

must be a non-trival power of g(x, y), and it clearly isn’t in general. It follows

that every cyclic normal subgroup of G lies in B.

For non-negative integers i, put

Bi =
{
b ∈ B : b3i = 1

}
.
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Now B1 contains a cyclic normal subgroup of G, namely 〈(x, x2)〉 where x

has order 3 in C3∞ . Conversely, let 〈(x, y)〉 be a non-trivial cyclic normal

subgroup of G. Then there is an integer i such that

(y−1, y−1x) = (x, y)g = (xi, yi).

Thus y−1 = xi and x = yi+1 so that xi
2+i+1 = 1. Now x = 1 implies that

y = 1, which is not possible, so x 6= 1 and x has order a power of 3. In

particular 3 divides i2 + i+ 1. Thus i = 1 + 3k for some integer k (since the

only solution of i2 + i+ 1 modulo 3 is i = 1). Also 9 never divides i2 + i+ 1,

so x has order 3. Finally, y = x−i = x−1x−3k = x−1 = x2 so that

λ1(G) =
〈
(x, x2)

〉
< B1.

The quotient B1/λ1(G) is cyclic, so B1 ≤ λ2(G) by 5.3.1. There is a

homomorphism G → G, (u, v) 7→ (u, v)3, g 7→ g for u, v ∈ C3∞ . This

homomorphism is onto and has kernel B1. Therefore G/B1
∼= G. Using the

same argument as above, it follows that Bi ≤ λ2i(G) for all integers i ≥ 0.

Also λi(G) < Bi for all i. This has been shown for i = 1. Suppose this

is true for i ≥ 1. Note that λi+1(G)Bi/Bi is generated by cyclic normal

subgroups of G/Bi since λi(G) < Bi and so λi+1(G)Bi/Bi ≤ λ1(G/Bi) <

Bi+1/Bi by the case i = 1.

Since B is the union of the Bi, we have λω(G) = B (and λi(G) 6= B for

all integers i ≥ 0). That G = λω+1(G) is clear. Note that in this example,

the factors of the Lambda series are abelian.

5.3.12 Example. The group G = C3∞ o C3 has (abelianized) cyclic height

ω + 1 and λω(G) is the base group of G.
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Proof. Any cyclic normal subgroup of G lies inside the base group B of G.

Any diagonal element of B generates a cyclic normal subgroup of G. If a ∈ B

is a non-diagonal, there is b ∈ B and 1 6= c ∈ B with b diagonal and c with

at least one trivial entry such that a = bc. If a generates a cyclic normal

subgroup of G and g is an element of order 3 generating the top of G, there

is an integer i such that

bcg = ag = ai = bici.

Necessarily, cgc−i is diagonal. We will show that elements of this form are

not diagonal.

Without loss of generality, consider di = (1, x, y)g(1, xi, yi) = (y, xi, xyi).

If di is diagonal then y = xi = xyi,= xi
2
, so xi

2−i+1 = 1. Clearly x = 1

if and only if y = 1, so suppose otherwise. The order of x is a power of 3

and 32 does not divide i2 − i + 1. Thus x has order 3 and y = xi = x or

x2. Therefore di = (x, x, x2) or (x2, x2, 1) neither of which are diagonal. It

follows that λ1(G) is the diagonal subgroup D of G.

Now G/D is isomorphic to the group in Example 5.3.11 and if B is the

base group of G, then B/D = λω(G/D). The statement follows.

5.3.13 Example. There is a subgroup of GL(5,C) with (abelianized) cyclic

height ω. More specifically, let

a =



0 1 0

0 0 1

1 0 0

1 0

2 1


, b =



0 1 0

0 0 1

1 0 0

1 2

0 1
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and ci = diag(εi, 1, 1, 1, 1) where εi is a 3i-th primitive root of unity. Then

the group G = 〈a, b, ci : i = 1, 2, 3, . . .〉 has cyclic height ω.

Proof. Let

D = 〈diag(ci, cj, ck, 1, 1) : i, j, k = 1, 2, . . .〉 ∼= C3∞ × C3∞ × C3∞ .

Then G = D o 〈a, b〉. In D, there is a series of normal subgroups of length

ω of G with cyclic factors and so D ≤ λω(G) by 5.3.1.

There is a normal subgroup N of G such that DN/N is the base group

in G/N ∼= C3∞ o C3 and the base group is λω(G/N) as in 5.3.12. Now

D ≤ λi(G) implies DN/N ≤ λi(G/N) for all natural numbers i by 5.3.7, and

thus D = λω(G).

Also G/D is a free group of rank 2, and so λ1(G/D) = 1. Thus D =

λω(G) = λ(G).

If one adds the condition of irreducibility on a nilpotent linear group. then

the centre of the group is rather large. In particular, Suprunenko proves the

following (see [39] Theorem 3.13).

5.3.14 Theorem (Suprunenko). Let G be an irreducible nilpotent linear

group. Then ζ1(G) has finite index in G. Moreover, this index can be bound

explicitly in terms of the degree and nilpotency class of G.

Something similar happens for a supersoluble linear group G and λ1(G).

5.3.15 Lemma. Let G be a supersoluble group containing a torsion-free

abelian normal subgroup A of finite index in G. Then there is a free abelian

normal subgroup of finite index in G, generated by cyclic normal subgroups

of G. In particular, G/λ1(G) is finite.
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Since a completely reducible supersoluble linear group G has an abelian

normal subgroup B of finite index ([39] Theorem 1.14), then Lemma 5.3.15

applies; for some finite power of B is torsion-free. Thus we have:

5.3.16 Theorem. Let G be a supersoluble completely reducible linear group.

Then G/λ1(G) is finite.

Proof of Lemma 5.3.15 Regard A as a Z-module. Put V = Q ⊗Z A. The

group A embeds into V via the map a 7→ 1 ⊗ a. We regard A and V as

G-modules via conjugation.

Note that every subgroup of G is finitely generated. In particular, A is

finitely generated torsion-free abelian. LetA =
⊕r

i=1 Zai for some a1, . . . , ar ∈

A. Here dimQV = r.

Using the supersolubility of G, there is a G-series of A with cyclic factors.

Thus there is a series ofQG-submodules of V whose factors haveQ-dimension

at most 1; for by tensoring the G-series of A by Q, one obtains a QG-series

of V with Q-cyclic factors.

Now A acts trivially on V , so V is a QG
A

-module. By Maschke’s theorem,

V is completely reducible as QG
A

-module and thus as QG-module. Therefore,

V is a direct sum of 1-dimensional QG-modules, Qvi for 1 ≤ i ≤ r.

Moreover, each

vi =
r∑
j=1

mj

pj
aj

for some integers mj, pj, and thus

wi = (
r∏
j=1

pj)vi ∈ A.
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Fix 1 ≤ i ≤ r and g ∈ G. There is a rational s such that vig = svi.

Since 0 6= A ∩Qvi ≤ZG A and A is G-supersoluble, there is 0 6= b ∈ A ∩Qvi
such that Zb ≤G A ∩Qvi. Therefore, bg = nb for some integer n. Since A is

torsion-free and some power of g acts trivially on A, we have n = ±1. Now

b = kvi some k ∈ Q, so nb = bg = s(kvi) = sb. Thus s = ±1. Hence for all

g ∈ G we have wig = ±wi and so 〈wi〉�G.

Now B = 〈wi : 1 ≤ i ≤ r〉 is a normal subgroup of G contained in A. Also

〈wi〉 ≤ 〈vi〉 and V =
⊕r

i=1Qvi, so the subgroup B is free abelian of rank r.

Since A is also free abelian of rank r, the quotient A/B must be finite. Thus

B has finite index in G. We have exhibited a subgroup B with the required

properties. Note that B ≤ λ1(G).

One can use Suprenenko’s theorem in the theory of skew linear groups to

prove the following:

5.3.17 Proposition (Zalesskii, [52]). Let D be a locally finite-dimensional

division algebra and let G be a locally nilpotent subgroup of GL(n,D) with

U(G) = 1. Then G is centre by locally-finite.

A natural question, is whether one can replace “nilpotent” by “supersol-

uble” in 5.3.17 and conclude that G/λ1(G) is locally-finite.

The proof of 5.3.17 given in [34] uses the fact that the centre of a linear

group is a closed subgroup. In general the subgroup λ1(G) is not closed in

G, so a similar technique will not work.

5.3.18 Example. Let A be a free abelian group of infinite rank and G =

A o C2. Then G is a linear group with λ1(G) not closed in G.

Proof. Let B = A×A be the base group of G. Now cyclic normal subgroups
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of G are generated by elements of the form (a, a) or (a, a−1) for a ∈ A, so

λ1(G) =
〈
(a, a), (a, a−1) : a ∈ A

〉
.

Now (a, b)2 = (a, a−1)(a, a)(b, b−1)−1(b, b) for all a, b ∈ A, so B2 ≤ λ1(G).

Also λ(G) = B2 〈(a, a) : a ∈ A〉, since (x, x) = (x2, 1)(x−1, x) for x ∈ A.

Thus B/λ1(G) is an elementary abelian 2-group of infinite rank.

The base group B is linear by Mal’cev’s theorem [39] 2.2. This theorem

says that an abelian group Z is a linear group of degree n over some field

of characteristic 0 if and only if the torsion group of Z has finite rank ≤ n.

Thus G is linear over a field F of characteristic 0.

Suppose that λ1(G) is closed. Then by [39] Theorem 6.4, G/λ1(G) is

linear over F . But G/λ1(G) contains an elementary abelian 2-group of in-

finite rank, which contradicts Mal’cev’s theorem. Therefore λ1(G) is not

closed.

We conclude with some open questions.

5. Let G be a locally supersoluble skew linear group over a locally finite-

dimensional division algebra. Does G have an abelian normal subgroup A

generated by cyclic normal subgroups of G such that G/A is locally finite?

6. Is there a bound on the cyclic heights of skew linear groups over locally

finite-dimensional division algebras?
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Chapter 6

Generalized Engel elements

It is possible to generalize the notion of nilpotence by considering commuta-

tors of the form [x,n g]. This leads to “Engel theory”. An aim of the theory

is to determine the “Engel structure” of a group restricted by a solubility

or a finiteness condition. We shall review Engel theory briefly; the reader is

referred to Robinson [31] Section 12.3 for more details.

Our aim in this chapter is to provide a supersoluble analogue of Engel

theory.

6.1 Engel theory

Let x, g be members of the group G. We define higher commutators [x,n g]

for each positive integer n inductively:

[x,1 g] = [x, g]

and then for n ≥ 1,

[x,n+1 g] = [[x,n g], g].
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The element x is called a right Engel element of G if for every g ∈ G

there is a positive integer n such that

[x,n g] = 1.

Similarly, x is called a left Engel element of G if for every g ∈ G there is

a positive integer n such that

[g,n x] = 1.

Let R(G) and L(G) denote the sets of right and left Engel elements re-

spectively. Note that it is unknown as to whether these subsets of G are

actually subgroups of G.

6.1.1 Proposition. We have the following for any group G:

1. η(G) ⊆ L(G);

2. ζ(G) ⊆ R(G);

3. The inverse of a right Engel element is a left Engel element;

4. R(G) = G if and only if L(G) = G.

Part 3 of 6.1.1 is due to Heineken. A group G satisfying Part 4 of 6.1.1

is called an Engel group. By Part 1, any locally nilpotent group is Engel.

Golod (see [8]) has found an example of a finitely generated infinite Engel

p-group. This cannot be locally nilpotent; otherwise it would be finite.

If one looks at certain finiteness conditions, L(G) and R(G) are actually

subgroups:
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6.1.2 Theorem (Baer). Let G be a group satisfying the maximal condition

on subgroups. Then

L(G) = η(G) = η1(G)

is nilpotent and

R(G) = ζ(G) = ζm(G)

for some natural number m.

6.1.3 Corollary (Zorn). A finite Engel group is nilpotent.

6.1.3 was the first result to be proved about Engel groups; it is a group-

theoretic version of Engel’s theorem about ad-nilpotence in finite-dimensional

Lie Algebras (see Humphreys [14] Section 3.2). It follows from 6.1.3 that if

G is a finite group with every 2-generator subgroup nilpotent, then G is

nilpotent.

Linear groups have a nice Engel structure. More precisely,

6.1.4 Theorem (Gruenberg, [9]). Let G be a linear group. Then L(G) =

η(G) and R(G) = ζ(G).

In moving up to the finitary linear and up to certain finitary skew linear

cases, we lose the nice behaviour of the right Engel elements. However, the

left Engel elements still behave well.

6.1.5 Theorem (Wehrfritz, [45, 43]). Let G be a finitary skew linear

group over the division ring D. Suppose that either D is a field or is a locally

finite-dimensional division algebra over a perfect field. Then L(G) = η(G).

There are examples of such groups G for which G is Engel and ζ(G) = 1.
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The McLain group M(Q, D) is a locally nilpotent finitary group with

trivial centre, giving us an example of the kind indicated in 6.1.5.

6.2 Definitions of Sengel elements

6.2.1 Definition of right Sengel elements

We shall now define a supersoluble analogue of Engel elements, as promised.

Let G be a group. A right Sengel element of G is an x ∈ G such that for

all g ∈ G, the 2-generator group 〈x, g〉 is supersoluble and [x, g] ∈ R(G′).

We write RS(G) for the set of all right Sengel elements of G. A right Sengel

group is one which coincides with its subset of right Sengel elements.

First we note that the subgroup λ(G) consists of right Sengel elements:

6.2.1 Lemma. For any group G,

λ(G) ≤ RS(G).

Proof. Let x ∈ λ(G) and g ∈ G. Then 〈x, g〉 ∩λ(G) is 〈x, g〉-hypercyclic and

the quotient 〈x, g〉 /(〈x, g〉 ∩ λ(G)) is cyclic. Thus 〈x, g〉 is hypercyclic and

so supersoluble by 1.3.1 Part 6.

Also λ(G) is G′-hypercentral by 5.3.3, so

[λ(G), G] ≤ G′ ∩ λ(G) ≤ ζ(G′),⊆ R(G′)

by 6.1.1. In particular, [x, g] ∈ R(G′).

In our supersoluble theory, we have no suitable replacement for the com-

mutator operation. We need something in our definition that applies to pairs
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of elements. The motivation for the 2-generator part of the definition comes

from the following theorem, which was proved using formation theory.

6.2.2 Theorem (Carter, Fischer and Hawkes, [4]). A finite group which

has all its 2-generator subgroups supersoluble is itself supersoluble. (cf. re-

mark after Zorn’s theorem 6.1.3.)

In a similar vein to above, Wehrfritz has shown the following result in

[38]. (In the same paper, he gives a direct proof of 6.2.2.)

6.2.3 Theorem (Wehrfritz). A linear group which has all its 2-generator

subgroups supersoluble is hypercyclic.

These theorems have an obvious consequence:

6.2.4 Corollary. 1. A finite right Sengel group is supersoluble;

2. A linear right Sengel group is hypercyclic.

A question that remains open is the following:

6.2.5 Question. If G is right Sengel then does it follow that G′ is Engel?

Certainly 〈R(G′)〉 = G′.

We conclude this section with a discussion on the strength of the definition

of right Sengel element.

Obviously, for a satisfactory supersoluble Engel theory we need 6.2.4. If

we remove the condition of supersolubility on the 2-generator subgroup 〈x, g〉

in the definition of right Sengel element, then Corollary 6.2.4 becomes false.

For example, let G be the alternating group on 4 letters. Here, G satisfies

the commutator condition [x, g] ∈ R(G′) = ζ(G′) = G′ for all x, g ∈ G, but

G is not supersoluble.
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Suppose that we remove the commutator condition from the definition of

right Sengel element. Consider the set S of elements x of the finite group

G such that 〈x, g〉 is supersoluble for all g ∈ G. Now if S = G then G is

supersoluble by 6.2.2. Also λ(G) ⊆ S using the proof of 6.2.1. But there are

finite groups G for which S 6= λ(G).

For the next example we shall use the following lemma:

6.2.6 Lemma ([50] Lemma 1.3, p3). Let p be a prime and let K be an

irreducible abelian group of linear automorphisms of the finite-dimensional

Fp-vector space V . If K has exponent dividing p − 1 then V has dimension

1.

Let H = Alt(4) and let p = 13. Now H has a faithful irreducible linear

representation of degree 3 over Fp. So H acts on A = F
(3)
p and we can form

the split extension G = AoH.

If X = 〈x〉 is a cyclic normal subgroup of G, then XA/A is a cyclic

normal subgroup of G/A ∼= H. Thus x ∈ A (for λ(H) = 1). Now X is an

H-submodule of A, hence it is trivial by the irreducibility of H. It follows

that λ(G) = 1.

Let x ∈ A and consider Y = 〈x, g〉 for g ∈ G. Now A∩Y is an elementary

abelian p-subgroup of Y and K = Y/(A∩Y ) is abelian group with exponent

dividing p − 1 (this is because G/A has order 12). Now K acts linearly

and completely reducibly (by Maschke’s theorem) on A ∩ Y . By 6.2.6 any

irreducible FpK-module is cyclic. Thus Y is supersoluble. It follows that

A ⊆ S, so S 6= λ(G).

Note that the above construction works for any non-trivial finite group

H such that λ(H) = 1 and with suitably chosen prime p (using Dirichlet’s
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theorem, see [12] Theorem 15). Thus without the commutator condition we

do not get a finite supersoluble version of Baer’s theorem 6.1.2. We shall

prove later in this chapter that our definition works for finite groups. That

is, RS(G) = λ(G) for a finite group G.

6.2.2 Definition of left Sengel elements

One is tempted to define “left Sengel elements” as the dual of right Sengel

elements, i.e. to say that x is left Sengel if for all g ∈ G the subgroup 〈x, g〉

is supersoluble and [g, x] ∈ L(G′). However this definition is unsatisfactory.

If left Sengel elements are to be supersoluble analogues of left Engel elements

then any x ∈ G which generates a locally supersoluble normal subgroup of

G ought to be left Sengel.

Let G be the alternating group on 4 symbols. Take x = (1, 2)(3, 4).

Then
〈
xG
〉

is supersoluble but 〈x, (1, 2, 3)〉 = Alt(4) is not. This example

shows that the dual of right Sengel element is not the correct definition of

left Sengel. Somehow we have to capture the property of normality into the

definition – to do this we use conjugates.

Let x be an element of the group G. We call x left Sengel if for all g ∈ G

the 2-generator subgroup 〈xg, x〉 is supersoluble and [xg, x] ∈ L(G′). Denote

the set of all left Sengel elements of G by LS(G).

It is well-known that there is no supersoluble analogue of the Fitting

subgroup or of the Hirsch-Plotkin radical. For example, by a theorem of

Baer, the product of two supersoluble normal subgroups is supersoluble if

and only if it is nilpotent-by-abelian (see [50] Theorem 1.13, page 8). To

make the presentation of our theory similar to that of Engel theory, we
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introduce some notation. Let ξ(G) be the union of all locally supersoluble

normal subgroups of G, i.e. so that x ∈ ξ(G) if and only if
〈
xG
〉

is locally

supersoluble. This will not be a subgroup of G in general. We call G left

Sengel if G coincides with LS(G).

6.2.7 Proposition. For any group G we have:

ξ(G) ⊆ LS(G).

Proof. Let x ∈ ξ(G), so that X =
〈
xG
〉

is locally supersoluble. Now X

contains 〈xg, x〉 for every g ∈ G, so each 〈xg, x〉 is visibly supersoluble. Also

X ′ is locally nilpotent and normal in G′, so

[xg, x] ∈ X ′ ≤ η(G′) ⊆ L(G′).

There is a relationship between the notions of right Sengel and left Sengel

similar to that of right Engel and left Engel.

6.2.8 Proposition. For any group G,

RS(G) ⊆ LS(G).

Proof. Pick x ∈ RS(G) and g ∈ G. Now by definition 〈x, xg〉 is supersoluble

and [x, xg] is a right Engel element of G′. By Heineken’s Theorem 6.1.1 Part

3, [xg, x] = [x, xg]−1 is left Engel in G′. Therefore x is left Sengel in G.

A consequence of Proposition 6.2.8 is that every right Sengel group is a

left Sengel group. The converse is false.

6.2.9 Proposition. There is a finite group G which is not supersoluble (in

particular, not right Sengel), is the product of two normal supersoluble sub-

groups and is a left Sengel group.
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Proof. (cf. [50] example on page 7) Let A = 〈x〉 × 〈y〉 where x and y have

order 5. Consider the automorphisms of A defined as follows:

α : x 7→ x2, y 7→ y−2;

β : x 7→ y−1, y 7→ x.

Put H = 〈α, β〉. The group H is Quarternion of order 8 since |α| = |β| = 4

and αβ = α−1. Let G be the obvious split extension A o H and choose

any h ∈ H. Then Rh = 〈A, h〉 is a proper normal subgroup of G. Also

Rh is supersoluble; for Rh/A is abelian of exponent dividing 4 acting lin-

early on A, so any irreducible Rh-submodule of A has dimension 1 by 6.2.6.

Therefore
〈
(ah)G

〉
(≤ Rh) is supersoluble for all a ∈ A and h ∈ H; that

is G = ξ(G) = LS(G). Now β2 acts non-trivially on A, so H acts faith-

fully and completely reducibly on A (using Maschke’s theorem). Hence A is

H-irreducible (otherwise, A would be the direct sum of two 1-dimensional

H-modules and consequently H would have to be abelian). As a result, G is

not supersoluble. However G = RαRβ.

We shall be interested in the “Sengel structure” of groups. Our main

interest is to see whether LS(G) = ξ(G) and RS(G) = λ(G) when G is

restricted suitably. We conclude this section with a basic result.

6.2.10 Proposition. Let N be a normal subgroup of G and let H be a

subgroup of G. Then:

1. LS(G) ∩H ⊆ LS(H) and RS(G) ∩H ⊆ RS(H);

2. LS(G)N/N ⊆ LS(G/N) and RS(G)N/N ⊆ RS(G/N).
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Proof. The first part follows by restriction; if x ∈ H is left Sengel in G, each〈
xh, x

〉
is supersoluble and [xh, x] ∈ L(G′)∩H ′ ⊆ L(H ′) for any h ∈ H. The

right Sengel part is similar.

If x, y ∈ G then N [x, y] = [Nx,Ny] and 〈Nx,Ny〉 = N 〈x, y〉 /N . Thus

〈Nx,Ny〉 is supersoluble when 〈x, y〉 is supersoluble. Also L(G′)N/N ⊆

L(G′N/N) = L((G/N)′). Thus the result follows for left Sengel elements

and is similar for right Sengel elements.

6.3 The Sengel structure of finite groups

In this section we show that the Sengel structure of finite groups is well-

behaved. This suggests that our definitions of Sengel elements are correct,

or at least reasonably good. We prove the following theorem:

6.3.1 Theorem. Let G be a finite group. Then RS(G) = λ(G) and LS(G) =

ξ(G).

First, a lemma:

6.3.2 Lemma. Let G be a finite group with unique minimal normal subgroup

N such that G/N is supersoluble, G/Op(G) is a p′-group and N is a p-

subgroup for some prime p. Then either G is supersoluble or N = Op(G).

Note thatG = Alt(4) is not supersoluble but has a unique minimal normal

subgroup V4 = O2(G) and G/V4 is a cyclic 2′-group.

Proof. Let P = Op(G), which contains N . Now ζ1(P ) 6= 1 and is normal in

G, so by uniqueness of N we have N ≤ ζ1(P ), i.e. P ≤ CG(N). Certainly

{n ∈ N : np = 1} is a non-trivial subgroup of N and is a normal subgroup
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of G, so that by minimality of N , it follows that N is an elementary abelian

p-group.

Let T = {z ∈ ζ1(P ) : zp = 1} ,≥ N . Now T is an elementary abelian

p-group and T is an Fp(G/P )-module via conjugation. By Maschke’s theo-

rem, T is completely reducible (G/P is a p′-group). Let Z be an Fp(G/P )-

submodule of T . Then [Z, P ] ≤ [ζ1(P ), P ] = 1 and Zk = Z for all k ∈ G.

Thus Z � G, so either Z ≥ N or Z = 1. In particular, every irreducible

submodule of T contains N and so must be N . Thus T = N .

Suppose that N 6= ζ1(P ). Using the supersolubility of G/N we can pick

a ∈ ζ1(P ) \ N , with ap ∈ N and M = 〈a〉N � G. Here M is abelian and

1 6= 〈ap〉 = Mp ≤ N . Now Mp � G, so N = Mp is cyclic. But then G is

supersoluble.

Assume, therefore, that N = ζ1(P ) and also that N 6= P . Then N <

ζ2(P ), so as before we can pick a ∈ ζ2(P ) \ ζ1(P ) with ap ∈ N and M =

〈a〉N �G, using the supersolubility of G/N .

Now CP (a) = CP (M) (for ain = (ain)z = (ai)zn if and only if (ai)z = ai,

for integer i, n ∈ N and z ∈ P ). Also CP (M) < P ; otherwise a ∈ ζ1(P ). The

subgroup CP (M) is a normal subgroup of G and N ≤M ≤ CP (M) because

a commutes with everything in N .

Therefore there is b ∈ P \ CP (M) such that bp ∈ CP (M) and R =

〈b〉CP (M) � G. We have [M,R] = [M, 〈b〉] since CP (M) centralizes M and

[M, 〈b〉] = [〈a〉 , 〈b〉] since N centralizes P .

Clearly

〈[a, b]〉 ≤ [〈a〉 , 〈b〉].

I claim that the reverse inclusion holds. Now [a, b] ∈ [M,P ] ≤ [ζ2(P ), P ] ≤
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ζ1(P ), so modulo 〈[a, b]〉, the subgroups 〈a〉 and 〈b〉 commute. Thus

〈[a, b]〉 = [〈a〉 , 〈b〉],

so that [M,R] is cyclic. Also b 6∈ CP (M), so [M,R] 6= 1.

Since [M,R] �G, it follows that N is cyclic by minimality of N . Thus G

is supersoluble.

We made the assumption that N 6= P to prove this. Thus the result

follows.

We now prove the first half of 6.3.1:

6.3.3 Proposition. Let G be a finite group. Then RS(G) = λ(G).

Proof. We already know that λ(G) ⊆ RS(G). We suppose that the result is

false and choose a minimal counterexample G. Note that by Baer’s theorem

6.1.2, we have ζ(E) = R(E) for any finite group E.

1 Claim. G has a unique minimal normal subgroup N such that N is an

elementary abelian p-group for some prime p, and G′ centralizes N .

If N1 and N2 are distinct minimal normal subgroups of G then N1∩N2 = 1

and thus G ↪→ G/N1 × G/N2 via the map x 7→ (N1x,N2x). Let G be the

image of G under this map. If x ∈ RS(G) then Nix ∈ RS(G/Ni) by 6.2.10.

The result holds for both G/N1 and G/N2 by hypothesis, so

(N1x,N2x) ∈ (λ(G/N1)× λ(G/N2)) ∩G

= λ(G/N1 ×G/N2) ∩G

≤ λ(G).
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In other words x ∈ λ(G) and the result holds. Thus G has a unique minimal

normal subgroup N .

Now RS(G) 6= 1, otherwise λ(G) = RS(G) = 1. Let x be right Sengel

in G. If R(G′) = ζ(G′) = 1 then [x, g] = 1 for all g ∈ G and so x ∈ ζ1(G).

But elements of ζ1(G) generate cyclic normal subgroups of G, so x ∈ λ(G),

i.e. RS(G) = λ(G). So R(G′) = ζ(G′) 6= 1 and by minimality of N we have

N ≤ ζ1(G′). Thus G′ centralizes N and N is abelian. In the usual way, N is

an elementary abelian p-group, proving Claim 1.

For this proof, we say that an element g ∈ G acts diagonally on N if for

some decomposition N = 〈x1〉× . . .×〈xn〉, we have xgi = xmii for some integer

mi for all 1 ≤ i ≤ n, i.e. 〈g〉 acts diagonally on N as linear group.

2 Claim. There is g ∈ G that does not act diagonally on N .

If otherwise, the abelian group G/CG(N) acts diagonally on N (by [39]

7.1(i)). Thus N contains a non-trivial cyclic normal subgroup of G and hence

N is cyclic. Then N ≤ λ(G).

Let x ∈ RS(G). Then by 6.2.10, Nx ∈ RS(G/N) = λ(G/N) so
〈
NxG/N

〉
is G/N -supersoluble. Thus

〈
xG
〉

is G-supersoluble and RS(G) = λ(G). This

contradiction implies Claim 2.

3 Claim. If x ∈ RS(G) then N ∩ 〈x, g〉 = 1 (with g as in Claim 2). In

particular, N ∩RS(G) = 1.

If N ∩ 〈x, g〉 6= 1 then there is a non-trivial cyclic normal subgroup C of

〈x, g〉 contained in N . For using the supersolubility of 〈x, g〉, there is a cyclic

normal series of 〈x, g〉 through N ∩ 〈x, g〉. Also C has order p.
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Clearly N =
〈
CG
〉
. Since G′ ≤ CG(N), we have C [h,g] = C for all h ∈ G

and so (Ch)g = Cgh = Ch. Now N is the direct product of some of the Ch, for

h ∈ G, so g acts diagonally on N , contradicting Claim 2. Thus N ∩〈x, g〉 = 1

and so N ∩RS(G) = 1.

4 Claim. If x ∈ RS(G) then G properly contains 〈x, g〉N .

If not, G = 〈x, g〉N,= N o 〈x, g〉 by Claim 3. Now C〈x,g〉(N) � 〈x, g〉 and

centralizes N , thus N 〈x, g〉 ≤ NG(C〈x,g〉(N)), i.e. C〈x,g〉(N) �G.

If C〈x,g〉(N) 6= 1 then N ≤ C〈x,g〉(N) ≤ 〈x, g〉, a contradiction. Thus

C〈x,g〉(N) = 1, so that CG(N) = N . (If z ∈ CG(N), then z = z1z2 for some

z1 ∈ N and z2 ∈ 〈x, g〉, and for n ∈ N , we have nz = nz2 ,= n if and only if

z2 = 1, if and only if z ∈ N .)

Thus 〈x, g〉 ∼= G/N = G/CG(N) is abelian and [x, g] = 1. In the above

argument we can replace g by gn for any n ∈ N = CG(N).

Hence CG(x) ⊇ 〈x, g, n : n ∈ N〉 ,= G so that x ∈ ζ1(G) ≤ λ(G). But

then N ≤ 〈x〉 and N ∩ 〈x, g〉 = 1, a contradiction.

5 Claim. The following holds:

RS(G) ⊆ CG(N).

Let x ∈ RS(G). Put K = 〈x, g〉N . By 4, K < G. By hypothesis

RS(K) = λ(K). Also x ∈ RS(K), by Lemma 6.2.10.

If N ∩λ(K) 6= 1 then there is a cyclic normal subgroup C of K such that

C ≤ N and C has order p. Then Cg = C. Using the argument of Claim 3,

g acts diagonally on N . This is a contradiction.

Thus N ∩ λ(K) = 1. Since both N and λ(K) are normal subgroups of

K, we have [N, λ(K)] ⊆ N ∩ λ(K) = 1 and so x ∈ λ(K) ⊆ CG(N).
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6 Claim. We have

G = 〈g〉 〈RS(G)〉 > 〈RS(G)〉 ≥ N.

Also G is a soluble group and G/N is supersoluble.

Let L = 〈g〉 〈RS(G)〉. Now conjugates of right Sengel elements are right

Sengel, so 〈RS(G)〉�G. Since RS(G) 6= 1 we have N ≤ 〈RS(G)〉.

Suppose that L 6= G. Then by hypothesis λ(L) = RS(L) and 〈RS(G)〉 ≤

RS(L), by 6.2.10. Thus L is (L-supersoluble)-by-cyclic and so supersoluble.

But then g acts diagonally on N contradicting Claim 2. Hence L = G.

Also RS(G)N/N ≤ RS(G/N) = λ(G/N), so 〈RS(G)〉 /N ≤ λ(G/N).

Since G/ 〈RS(G)〉 is cyclic and 〈RS(G)〉 /N ≤ λ(G/N) is G/N -supersoluble,

it follows that G/N is supersoluble. In particular, G is soluble.

If 〈RS(G)〉 = G then CG(N) = G by Claim 5; but then G is supersoluble.

Hence G > 〈RS(G)〉.

7 Claim. Let P = Op(G). We have the following inclusions:

N ≤ G′ ≤ η1(G) = P ≤ CG(N).

Since G is not abelian, we have N ≤ G′. Trivially, P ≤ η1(G). If η1(G)

is not a p-group then Oq(G) 6= 1 for some prime q 6= p and N 6≤ Oq(G), a

contradiction. Thus η1(G) = P . By Claim 6 and 1.3.1, G′/N is nilpotent.

Since N ≤ ζ1(G′) (by Claim 1), it follows that G′ is nilpotent, so G′ ≤ η1(G).

Now P is nilpotent, so ζ1(P ) 6= 1 and is normal in G. Thus N ≤ ζ1(P ),

so P ≤ CG(N).

8 Claim. N is properly contained in P .
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If N = P then G/N is abelian by 7. Then by 3, 〈x, g〉 is abelian, so

x ∈ CG(g) for any x ∈ RS(G). Thus N ≤ 〈RS(G)〉 ≤ CG(g), and g acts

centrally (and hence diagonally) on N , contradicting 2. This proves the

claim.

9 Claim. p is the largest prime dividing |G| and G/P is a p′-group.

Now G 6= 〈RS(G)〉 by Claim 6. Let q be a prime dividing the order of

g modulo 〈RS(G)〉. Let Y = 〈gq〉 〈RS(G)〉. Now Y < G, so by minimality

of G, we have λ(Y ) = RS(Y ) ≥ 〈RS(G)〉, as in the argument of Claim 6.

Since Y/ 〈RS(G)〉 is cyclic, it follows that Y is supersoluble. By the Sylow

Tower Theorem ([50] Theorem 1.8, page 5), Y has a unique (normal) Sylow

r-subgroup, where r is the largest prime dividing |Y |. Now by 6, Y �G, so

N ≤ Y and p = r. Thus one of p or q is the largest prime dividing |G|.

Suppose that q > p. Then q cannot divide |Y |. It follows that q2 is not a

divisor of |G|. By 6 and the Sylow Tower Theorem again, G/N has a unique

normal cyclic subgroup Q/N ∼= Cq.

Now [Q/N, 〈RS(G)〉 /N ] ⊆ Q/N ∩ 〈RS(G)〉 /N,= 1 (since q - |Y |) so

[Q, 〈RS(G)〉] ⊆ N . Also Q = N o 〈h〉 where h is an element of order q

in G. If h acts diagonally on N then Q is supersoluble and has a unique

cyclic normal q-subgroup, which is normal in G. This is a contradiction.

Thus h does not act diagonally on N . Now if x ∈ RS(G) then [x, h] ⊆

[RS(G), Q] ⊆ N . Also by 3, N ∩ 〈x, h〉 = 1. Thus [x, h] = 1. Therefore

h ∈ CG(RS(G)) = CG(〈RS(G)〉) and N ≤ 〈RS(G)〉. But then h acts

diagonally on N , a contradiction. So q ≤ p.

The supersolubility of G/N and the Sylow Tower Theorem ensure that

G/P is a p′-group, giving us Claim 9. We conclude the proof using Lemma
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6.3.2. By this Lemma, N = Op(G) = P , contradicting Claim 8.

We now prove the left Sengel part of 6.3.1. In fact, we shall prove something

stronger.

6.3.4 Proposition. Let G = 〈X〉 be a finite group and suppose that XG =

X. If for all x, y ∈ X, the subgroup 〈x, y〉 is supersoluble and [x, y] ∈ L(G′),

then G is supersoluble.

The rest of Theorem 6.3.1 follows from the Proposition. Let x ∈ LS(G)

and put H =
〈
xG
〉

(here we are taking X = xG = XH). Let g1, g2 ∈ G. Then

〈xg1 , xg2〉 =
〈
xg1g

−1
2 , x

〉g2

is supersoluble (since
〈
xg1g

−1
2 , x

〉
is supersoluble)

and

[xg1 , xg2 ] = [xg1g
−1
2 , x]g2 ∈ L(G′)g2 ∩H = L(G′) ∩H = L(H ′).

Hence by the Proposition, H is supersoluble and so LS(G) ⊆ ξ(G). By

6.2.7, ξ(G) = LS(G).

Proof of the Proposition:

Suppose that the result is false and choose G to be the smallest finite

group for which the result fails. Let M be a minimal normal subgroup of G.

Now

G/M = 〈X〉M/M = 〈Y 〉 ,

where Y = {Mx : x ∈ X}. Clearly Y G/M = Y . Since 〈Mx,My〉 = 〈x, y〉M/M

and [Mx,My] = M [x, y] ∈ L(G′M/M) = L((G/M)′) for all x, y ∈ X. The

hypotheses of the Proposition hold for G/M = 〈Y 〉. By minimality of G,

G/M is supersoluble.
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Let M1 be minimal normal subgroup of G not equal to M . Then G/M1

is supersoluble and M ∩M1 = 1, so that G ↪→ G/M ×G/M1 is supersoluble.

Thus M is the unique minimal normal subgroup of G.

Let N = η1(G). Now N = L(G) by Baer’s theorem 6.1.2 and N contains

L(G′) = η1(G′). For every x, y ∈ X we have [x, y] ∈ N . It follows that

G′ ≤ N . Thus N 6= 1; otherwise G is abelian, a contradiction.

Since N is nilpotent and ζ1(N) � G we have M ≤ ζ1(N) and G′ ≤ N ≤

CG(M). In the usual way, M is an elementary abelian p-group for some

prime p, N is a p-group and G acts on M as an abelian group.

If every x ∈ X acts on M diagonally, then by [39] 7.1(i), G acts on M

diagonally, so that M is cyclic. But then G is supersoluble. Thus pick x ∈ X

such that x does not act diagonally on M .

Suppose that
〈
xG
〉
6= G. Then

〈
xG
〉

satisfies the hypothesis of the result

(the set of generators here being xG), so
〈
xG
〉

is supersoluble. Also
〈
xG
〉
6= 1,

so M ≤
〈
xG
〉
. Consequently M contains a cyclic subgroup C of order p, that

is normalized by
〈
xG
〉
. Now Cgx = Cxg since G′ centralizes M , and Cxg = Cg

since x normalizes C. Also M = CG is the direct product of the Cgi where

the gi are distinct coset representatives of NG(C) in G. But then x acts

diagonally on M , a contradiction. Thus G =
〈
xG
〉
.

It is sufficient to prove that x ∈ RS(G). For then x ∈ λ(G) by 6.3.3 and

G = λ(G). Let g ∈ G. The commutator [x, g] ∈ G′ ≤ N which is nilpotent,

so [x, g] ∈ G′ = ζ(G′) = R(G′). Therefore, it is enough to prove that for all

g ∈ G, the subgroup H = 〈x, g〉 is supersoluble.

Suppose that H < G. Then
〈
xH
〉

is supersoluble. If M ∩
〈
xH
〉

= 1 then

H ↪→ H

H ∩M
× H

〈xH〉
.
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Now HM/M is supersoluble (it is a subgroup of the supersoluble quotient

G/M) and H/
〈
xH
〉

is cyclic (it is generated by the image of g). Hence H is

supersoluble.

If M ∩
〈
xH
〉
6= 1 then there is a cyclic subgroup C of order p contained in

M and normalized by
〈
xH
〉
. We have seen this situation twice in this section

already; x must act diagonally on M so we have a contradiction.

Thus if x 6∈ RS(G), then 〈x, g〉 = G for some g ∈ G.

Since G/Op(G) is abelian, it must be a p′-group. Also G/M is supersol-

uble, so we can apply Lemma 6.3.2 to get M = Op(G) = N .

Suppose M ∩ 〈x, xg〉 6= 1. Then we can choose a cyclic subgroup C in

M of order p which x normalizes (using the supersolubility of 〈x, xg〉). This

implies that x acts diagonally on M , a contradiction.

Suppose that M ∩ 〈x, xg〉 = 1. The group G/M = G/N is abelian, so x

centralizes xg and hence [x, g] also. The commutator [x, g] 6= 1 because G is

not abelian. Therefore, x centralizes a non-trivial cyclic subgroup 〈[x, g]〉 of

M (note that G′ ≤ M). Again, this ensures that x acts diagonally on M .

This final contradiction completes the proof and the section.

6.4 Sengel structure in finitely generated

linear groups

In this section, we concentrate on finitely generated linear groups. In the

sequel, we shall reduce the Sengel theory of certain finitary groups to the

Sengel theory of finitely generated linear groups.

We shall prove results about linear groups of positive characteristic. In
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zero characteristic, supersolubility behaves differently. We have not investi-

gated this case; perhaps the methods of D.Segal in [33] could be used to yield

a result in this direction.

First, we deal with right Sengel elements. We need some auxiliary results.

6.4.1 Lemma. Let A ≤ B be normal subgroups of G and let B/A be both

finite and G/A-supersoluble. Then G/CG(B/A) is supersoluble.

Proof. Let H = G/CG(B/A). Now H, being a group of automorphisms of

B/A, is finite. So the natural split extension K = B
A
oH is a finite group.

Now B/A has a supersoluble series whose terms are normalized by G.

This series is also normalized by H, and hence K. Thus B/A ≤ λ(K). Now

CK(λ(K)) ≤ CK(B/A) so by a result of Baer (see either Hill [13] Corollary

2.9 on page 95 or [50] Theorem 7.15 on page 34), K/CK(B/A) is supersoluble.

The centralizer CH(B/A) is trivial. (If for all a ∈ A,

(aB)gCG(B/A) = agB = aB

then g ∈ CG(B/A), that is gCG(B/A) = CG(B/A).) Thus

H ∼=
H

CH(B/A)
=

H

CK(B/A) ∩H
∼=
HCK(B/A)

CK(B/A)
≤ K

CK(B/A)
,

so H is supersoluble.

We shall use the profinite and congruence topologies on a group of integral

matrices. We discuss these notions now.

The integral general linear group GL(n,Z) of degree n can be made into

a topological group using the subgroups

CGL(n,Z)((Z/rZ)(n)) = GL(n,Z) ∩ (1 + rM(n,Z)),
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for positive integers r, as a base of open neighbourhoods of the identity. This

topology is called the congruence topology on GL(n,Z). Naturally, one can

do the same thing in the language of finitely generated free Z-modules M ;

viz., the congruence topology on GL(M) is given by using the subgroups

CGL(M)(M/rM), for positive integers r, as a base of open neighbourhoods of

the identity.

The profinite topology on the group G is obtained by taking all cosets of

normal subgroups of finite index in G for an open base.

We shall be interested in a small class of integral matrix groups in which

these topologies turn out to be the same.

6.4.2 Theorem (Wehrfritz, [40] Theorem 2). Let G be a soluble-by-

finite subgroup of GL(n,Z). Then G is closed in GL(n,Z) in the congruence

topology and the congruence topology induces the profinite topology.

(See [40] for a proof of this, and for more on these topologies. For more

general results see [42].)

Let Y be a finitely generated free abelian normal subgroup of G. Now H =

G/CG(Y ) acts faithfully on Y and GL(Y ) ∼= GL(n,Z). If, further, H is

soluble-by-finite then we can use the last theorem; the induced congruence

topology on H is the profinite topology on H. If L is any normal subgroup of

finite index in H, then L is open in the profinite topology, and hence in the

congruence topology. Now L contains the identity, so it contains an induced

member of the open base we specified for the congruence topology, say

CH(Y/Y i) = H ∩ CGL(Y )(Y/Y
i)
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for some integer i (note that we are considering Y multiplicatively). We shall

use this technique below.

6.4.3 Proposition. Let X � G with X polycyclic-by-finite and X/Xm ≤

λ(G/Xm) for every positive integer m. Then X ≤ λ(G).

Proof. The number of infinite cyclic factors in any polycyclic series of any

polycyclic normal subgroup of finite index of X is an invariant of X called

the Hirsch number h of X. (See Scott [32] 7.1.5 for a proof of this; Scott calls

polycyclic-by-finite groups, M-groups.) The proof works by induction on h.

If h = 0 then X is finite, so the result is obvious (take m = |X| in the

hypothesis). So assume that h > 0. Then X has a non-trivial free abelian

characteristic subgroup Y ([32] 7.1.10) of rank n, say.

Now for any positive integer m, X/Y m has a smaller Hirsch number than

that of X, and (X/Ym)
(X/Ym)r

= X
XrYm

is an image of X/Xr for all positive integers

r. Thus X/Y m satifies the hypothesis of the Proposition, so by induction

X/Y m ≤ λ(G/Y m). In particular, X/Y ≤ λ(G/Y ) and Y/Y m ≤ λ(G/Y m)

for all positive integers m. It is enough to show that Y ≤ λ(G).

Let p be any prime. Then Y/Y p ≤ λ(G/Y p) and G/CG(Y/Y p) ↪→

GL(n,Fp) (for Y/Y p is an elementary abelian p-group of rank n). By Lemma

6.4.1, G/CG(Y/Y p) is supersoluble. Thus G/CG(Y/Y p) is soluble of derived

length ≤ 2n by a theorem of Huppert (see [5] Theorem 6.2A). Hence

G(2n) ≤
⋂
p

CG(Y/Y p) = CG(
Y

∩pY p
) = CG(Y ).

It follows that H = G/CG(Y ) is soluble. Also H embeds into GL(Y ) ∼=

GL(n,Z). By Theorem 9.8 of [11], H is polycyclic. Therefore the natural

split extension K = Y oH is also polycyclic.
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Let N be a normal subgroup of K of finite index r. Then Y r ≤ N . Also

H ∩N has finite index in H. We apply the aforementioned technique on H

(taking L = H ∩N). There is a positive integer s with CH(Y/Y s) ≤ H ∩N .

Now Y rsCH(Y/Y rs) is normal in K; certainly Y rs is normal in K, and also

[CH(Y/Y rs), Y ] ≤ Y rs and [CH(Y/Y rs), H] ≤ CH(Y/Y rs). Also Y/Y rs is G-

supersoluble, so by Lemma 6.4.1, G/CG(Y/Y rs) is supersoluble. Furthermore

H

CH(Y/Y rs)
=

G/CG(Y )

CG/CG(Y )(Y/Y rs)
=

G/CG(Y )

CG(Y/Y rs)/CG(Y )
∼=

G

CG(Y/Y rs)
,

so H/CH(Y/Y rs) is supersoluble.

Also Y CH(Y/Y rs)
Y rsCH(Y/Y rs)

is an image of Y/Y rs and so is K-supersoluble. The

quotient

H

CH(Y/Y rs)
=

H

(H ∩ Y )CH(Y/Y rs)
=

H

H ∩ Y CH(Y/Y rs)

∼=
Y H

Y CH(Y/Y rs)

=
K

Y CH(Y/Y rs)

is supersoluble, so that K/(Y rsCH(Y/Y rs)) is supersoluble and thus so too

is K/N .

Therefore all finite images of K are supersoluble. By Baer’s theorem (see,

for example, [39] 11.11), K itself is supersoluble. In particular, Y ≤ λ(K)

and so Y ≤ λ(G). It follows that X ≤ λ(G).

6.4.4 Corollary. Let G be a group and x ∈ RS(G). If X =
〈
xG
〉

is

polycyclic-by-finite, then X ≤ λ(G).

Proof. For each X/Xm is both periodic and polycyclic-by-finite, so in par-

ticular is finite. Since Xmx ∈ RS(G/Xm), we have X/Xm ≤ λ(G/Xm) by

6.4.1. The Proposition gives the result.
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6.4.5 Theorem. Let G be a finitely generated linear group of degree n and

characteristic p > 0. Then

RS(G) = λ(G).

Proof. Let x ∈ RS(G) and put X =
〈
xG
〉
. By Mal’cev’s theorem ([39] 4.2),

there is a family H of normal subgroups H such that each G/H is finite,

is linear of degree n and characteristic p, and also
⋂
H = 1. In particular,

G is residually finite. Furthermore, if Q is a unipotent normal subgroup of

G then QH/H is a unipotent normal subgroup of G/H. (Note: Since G is

finitely generated, we can regard G as being “linear” over a finitely generated

integral domain. Mal’cev’s theorem then applies.)

Now each XH/H =
〈
HxG/H

〉
≤ λ(G/H) so in particular each XH/H

is soluble of derived length at most 2n, by Huppert’s result again. Thus

X(2n) ≤
⋂
H = 1, so X is soluble (of derived length ≤ 2n).

By the Lie-Kolchin theorem [39] 5.8, the connected component X◦ is

triangularizable. Also X◦ � G. Let U = U(X◦). Now X◦/U is a finitely

generated abelian group by [39] 4.10, hence
〈
UxG/U

〉
= X/U is finitely-

generated-abelian by finite and thus is G/U -hypercyclic by Corollary 6.4.4.

We show that U is G-hypercyclic. Now UH/H is a unipotent normal

subgroup of G/H and UH/H ≤ λ(G/H) so

[U, 1
2
n(n−1) UG

′Gp−1] ≤ H

for every H ∈ H by [39] 11.12, and so U ≤ ζ 1
2
n(n−1)(UG

′Gp−1).

Let Ui = U ∩ ζi(UG′Gp−1). Now ζi(UG
′Gp−1) is closed in UG′Gp−1,

so Ui is closed in U . Also if Wi is the closure of Ui in G, then certainly
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Ui ≤ U ∩Wi. Also Ui = U ∩B for some B closed in G. Now B must contain

Wi, so Ui = U ∩B ⊇ U ∩Wi, that is Ui = U ∩Wi.

Now G/UG′Gp−1 is a finitely generated periodic abelian group so is finite.

Also, each Ui+1/Ui is centralized by UG′Gp−1. Thus if y ∈ U1, then y has

only finitely many conjugates in G. Thus
〈
yG
〉

is finitely generated and hence

finite. Since G is residually finite, there is a normal subgroup N of finite index

in G such that
〈
yG
〉
∩N = 1. As G-operator groups,

〈
yG
〉

is isomorphic to

N
〈
yG
〉
/N which, being a subgroup of NX/N , is G-hypercyclic. Therefore〈

yG
〉

is G-hypercyclic. It follows that U1 is G-hypercyclic.

To finish, the above method can be used again. By Theorem 6.4 of [39],

there is a linear representation of G over F with kernel Wi. Hence G/Wi is

a finitely generated linear group and as such is residually finite. Also

Ui+1

Ui
=

Ui+1

Wi ∩ Ui+1

∼=G
Ui+1Wi

Wi

.

The above method can be used to prove that Ui+1Wi/Wi is G-hypercyclic

(by chosing y ∈ Ui+1Wi/Wi) and thus that Ui+1/Ui is G-hypercyclic.

Hence U , and so X, is G-hypercyclic. In particular, x ∈ λ(G), finishing

the proof.

Now we head towards the corresponding result for left Sengel elements.

6.4.6 Lemma. Let G be a group and x ∈ LS(G). If
〈
xG
〉

is polycyclic-by-

finite, then
〈
xG
〉

is supersoluble.

Proof. Put X =
〈
xG
〉
. Suppose first that X is finite. Then G/CG(X), being

a group of automorphisms of X, is finite. Also CG(X)x ∈ LS(G/CG(X)) =
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ξ(G/CG(X)) by 6.2.10 and 6.3.1. Hence

X

ζ1(X)
=

X

X ∩ CG(X)
∼=
XCG(X)

CG(X)

is supersoluble. It follows that X is supersoluble (ζ1(X) is X-supersoluble).

Now we look at the general case. We consider finite images of X. Let

N be a normal subgroup of finite index in X. Then the core NG of N in

G is also a subgroup of finite index in X. Now X/NG =
〈
xNG

〉
and so is

supersoluble by above argument. The group X/N is a quotient of X/NG, so

X/N is supersoluble too. Thus all finite images of X are supersoluble. In

particular, X must be polycyclic. By a theorem of Baer (see for example [39]

11.10), X is supersoluble.

6.4.7 Theorem. Let G be a finitely generated subgroup of GL(n, F ), where

F is a field of characteristic p > 0. Then LS(G) = ξ(G).

Proof. Let x ∈ LS(G) and put X =
〈
xG
〉
. Using Mal’cev’s theorem ([39]

4.2), there is a set H of normal subgroups H � G with
⋂
H = 1 and each

G/H isomorphic to a finite linear group of degree n and characteristic p.

Let U = U(X), the unipotent radical of X. If g ∈ G then U g is a

unipotent normal subgroup of X, so U � G. Also UH/H is unipotent in

G/H (this is a detail of Mal’cev’s theorem which was applied above).

EachXH/H is supersoluble; forXH/X =
〈
(Hx)G/H

〉
andHx ∈ LS(G/H),

so supersolubility follows by the Sengel theory of finite groups, Theorem 6.3.1.

In particular, XH/H is soluble of derived length ≤ 2n by Huppert’s theorem

([5] Theorem 6.2A). Thus X is soluble, since X(2n) ≤
⋂
H = 1.

By the Lie-Kolchin Theorem ([39] 5.8) there is a (Zariski) closed triangu-

larizable normal subgroup T of finite index in X. Now U(T ) = U∩T . By [39]
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Lemma 4.10, TU/U ∼= T/(U ∩ T ) = T/U(T ) is finitely generated abelian, so

X/U is (finitely generated abelian)-by-finite. Thus X/U is supersoluble by

6.4.6.

To finish the proof, we show that U is X-hypercyclic.

Now by [39] 11.12 we have [U, 1
2
n(n−1) UX

′Xp−1] ⊆ H, for all H ∈ H and

thus [U, 1
2
n(n−1) UX

′Xp−1] = 1. Let Ui = U ∩ ζi(UX ′Xp−1), a (Zariski) closed

normal subgroup in U .

Put Wi = Ui, the closure of Ui in G. The subgroup Ui is closed in U , so

Ui = U ∩B for some closed subset B in G. Clearly Wi ⊆ B, so U ∩Wi = Ui.

Each Ui+1/Ui is centralized by UX ′Xp−1. Also UX ′Xp−1 has finite index in

X; for X/U is supersoluble and so UX ′Xp−1/U has finite index in X/U .

Thus if y ∈ U1, then y has only finitely many conjugates in X. Therefore〈
yX
〉

is a finitely generated normal subgroup of X. Now U is locally finite; it

is a unipotent group in characteristic p and so is a nilpotent p-group. Hence〈
yX
〉

is finite.

The group G is residually finite, so there is a normal subgroup N of

finite index in G for which N ∩
〈
yX
〉

= 1. Hence as X-operator groups〈
yX
〉

is isomorphic to N
〈
yX
〉
/N,≤ NX/N , which is supersoluble, whence〈

yX
〉

is X-supersoluble. This holds for any y ∈ U1. It follows that U1 is

X-hypercyclic.

Now by [39] 6.4, there is a linear representation of G over F with kernel

Wi, for each i. Thus G/Wi is a finitely generated linear group and so is

residually finite (by Mal’cev’s result again).

We can use a similar argument to above to see that

Ui+1

Ui
=

Ui+1

Wi ∩ Ui+1

∼=X
Ui+1Wi

Wi
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is X-hypercyclic.

Therefore X is hypercyclic and x ∈ ξ(G), as required.

6.5 Sengel structure of certain finitary skew

linear groups

The aim of this section is to prove reduction theorems for certain finitary

linear groups, so that the Sengel structure of these groups can be obtained

from that of their finitely generated subgroups. We start by discussing right

Sengel elements.

6.5.1 Example. Let D be any division ring. Then the McLain group G =

M(Q, D) is a right Sengel group with λ(G) = 1. In particular, M(Q,Fp)

gives us a locally finite example.

This is analogous to the right Engel structure of finitary linear groups; the

same example G is a right Engel group with trivial hypercentre. However,

if we restrict ourselves to linear groups, the right Sengel structure is well-

behaved. We head towards this result first.

6.5.2 Lemma. Let V be a finite-dimensional D-G module. Suppose that for

every finitely generated subgroup X of G there is a D-X series of V with

1-dimensional factors. Then there is a D-G series of V with 1-dimensional

factors.

Proof. Let X ≤ Y be finitely generated subgroups of G. Let UX be the sum

of the 1-dimensional D-X submodules of V . Then 0 < UY ≤ UX . Choose X

with dimDUX minimal, so now UY = UX for all such Y ≥ X. We can write
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UX =
⊕

i∈I UX,i where UX,i is a non-zero D-X homogeneous component of

UX . Similarly write UY =
⊕

j∈J UY,j. For all j ∈ J there is i ∈ I such that

UY,j ≤ UX,i. Among the X chosen above, pick X with the maximum number

of non-zero components UX,i. Then in the above we now have UY,j = UX,i.

Let g ∈ G and put Z = 〈X, g〉. In this case, the D-Z homogeneous

components UZ,k must match up with the D-X homogeneous components

UX,i by minimality. Hence UX,i is the direct sum of isomorphic 1-dimensional

D-Z irreducibles. Thus g acts as a scalar on UX,i for all i. This holds for all

g ∈ G, so there is a 1-dimensional D-G submodule W of V . By induction,

the result holds for the D-G module V/W , thus it holds for V .

6.5.3 Lemma. Let A be an abelian normal subgroup of G, let X be a finitely

generated subgroup of G and suppose that A ∩ Y ≤ λ(Y ) for every finitely

generated subgroup Y of G containing X. Then A is X-hypercyclic.

Proof. Consider P = λ(AX). Let y ∈ A and put Y = 〈X, y〉. Now A ∩ Y ≤

λ(Y ), so A ∩ Y is X-hypercyclic. Thus y ∈ A ∩ Y ≤ P . In other words we

have A ∩ P = A, as required.

6.5.4 Proposition. Suppose that G is a linear group of degree n with unipo-

tent normal subgroup U�G such that U∩X ≤ λ(X) for all finitely generated

subgroups X of G. Then U ≤ λ(G).

Proof. The result is clear for degree n = 1 or when U = 1, so assume

otherwise. Now a unipotent normal subgroup of G is a stability group, so

W = CV (U) 6= 0. Put U1 = CG(V/W ) ∩ U,�G. Now U1 is unipotent and

furthermore stabilizes the series

0 < W < V.
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Now G/U1 acts linearly on V/W , the subgroup U/U1 is unipotent under this

action, and V/W has dimension strictly less than n.

If Y/U1 is a finitely generated subgroup of G/U1 then Y/U1 = XU1/U1

for some finitely generated subgroup X of G and so

U

U1

∩ XU1

U1

=
(U ∩X)U1

U1

≤ λ(X)U1

U1

≤ λ

(
Y

U1

)
.

By induction, U/U1 is G/U1-hypercyclic. Thus we can replace U by U1

and show that U is G-hypercyclic to finish the proof.

Now the abelian group of homomorphisms H = HomF (V/W,W ) is a

G-module via the action

αg : v +W 7→ (vg−1 +W )αg,

where α ∈ H, g ∈ G and v ∈ V . There is a Z-monomorphism

β : U → H, u 7→ (v +W 7→ [v, u] = v(u− 1)).

This is a homomorphism because [v, u1u2] = [v, u1] + [vu1, u2] for v ∈ V and

u1, u2 ∈ U , and because v +W = vu1 +W .

The group U is abelian and is a G-module by conjugation. Now if g ∈ G

and u ∈ U then

β : ug 7→ (v +W 7→ [v, ug])

and

(uβ)g : v +W 7→ (vg−1 +W )(uβ)g = [vg−1, u]g = [v, ug].

Thus (uβ)g = ugβ and β is a G-map.

Put A = F (Uβ), an F -subspace of H. Then the dimension of A over F

is finite. By Lemma 6.5.3, U is X-hypercyclic for every finitely generated
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subgroup X of G. Thus A has an FX-series whose factors have dimension

at most 1 over F . Applying Lemma 6.5.2, A has such an FG-series.

If Fa is an FG-module and Za is a G-module then for any g ∈ G, there

is n ∈ Z with ag = na. Thus for every α ∈ F we have (αn)g = n(αa) ∈ Zαa.

Therefore every element of Fa generates a Z-cyclic G-module and so Fa is

G-hypercyclic. Thus Uβ, and hence U , is G-hypercyclic, as required.

6.5.5 Proposition. Let G be a linear group and let L be the set of all finitely

generated subgroups of G. Then we have

λ(G) =
⋃
H∈L

⋂
H≤K∈L

λ(K).

Proof. We may assume that our ground field is algebraically closed. For

H ∈ L, put ΛH =
⋂
H≤K∈L λ(K). If H ≤ L ∈ L then

{λ(K) : H ≤ K ∈ L} ⊇ {λ(K) : L ≤ K ∈ L}

so that ΛH ≤ ΛL. Thus Λ =
⋃
H∈L ΛH is a normal subgroup of G.

Also λ(G) ∩H ≤ λ(H) for every H ≤ G, so

λ(G) ∩H = λ(G) ∩
⋂

H≤K∈L

K ≤
⋂

H≤K∈L

λ(K) = ΛH .

Taking unions over all H ∈ L, we get λ(G) ≤ Λ.

Let U = U(Λ) and X ∈ L. Let y ∈ U ∩ X. Then y ∈ ΛH from some

H ∈ L and also y ∈ X. Put Y = 〈H,X〉. Then ΛH ≤ ΛY , so y ∈ ΛY ≤ λ(Y ).

Since λ(Y ) ∩X ≤ λ(X), we have y ∈ λ(X). Hence U ∩X ≤ λ(X), for any

X ∈ L. By Proposition 6.5.4, U ≤ λ(G).

Now U(G) ∩ Λ = U and

Λ

U
=

Λ

U(G) ∩ Λ
∼=G

ΛU(G)

U(G)
≤ G

U(G)
,
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so we may assume that G is completely reducible.

Each ΛH , for H ∈ L, is linear and hypercyclic, so in particular is soluble.

The ΛH form a local system for Λ, so Λ is soluble. We have used Zassenhaus’

result which says that a locally soluble linear group is soluble ([39] Corollary

3.8).

By [39] Theorem 3.5(ii), there is an abelian normal subgroup A of G

which is a subgroup of finite index in Λ. Using [39] Lemma 1.12, G/CG(A)

is finite, so G = CG(A)X for some finitely generated subgroup X of G.

If a ∈ A then there is Y ∈ L with X ≤ Y and a ∈ ΛY (certainly a ∈ ΛH

for some H ∈ L, so take Y = 〈H,X〉 and then a ∈ ΛH ≤ ΛY ). Now

〈
aG
〉

=
〈
aX
〉
≤
〈
aY
〉
≤ ΛY ≤ λ(Y ).

Also G = CG(A)Y , so any Y -hypercyclic series of
〈
aG
〉

is a G-hypercyclic

series of
〈
aG
〉
. It follows that A ≤ λ(G).

Thus we may assume that A is trivial. Then Λ is finite, so that G/CG(Λ)

is finite. The same argument above with a chosen in Λ gives
〈
aG
〉
≤ λ(G),

and this finishes the proof.

6.5.6 Theorem. Let G be a linear group for which each finitely generated

subgroup X has the property that RS(X) = λ(X). Then G has this property

as well, that is RS(G) = λ(G).

Proof. Let L be the set of all finitely generated subgroups of G and suppose

that H,K ∈ L with H ≤ K. Then

H ∩RS(G) ⊆ RS(K) = λ(K),
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so

H ∩RS(G) ⊆
⋂

H≤K∈L

λ(K).

Thus

RS(G) ⊆
⋃
H∈L

⋂
H≤K∈L

λ(K),= λ(G)

by Proposition 6.5.5. The reverse inclusion holds by 6.2.1.

Using Theorem 6.5.6 and Theorem 6.4.5 gives us the result we desire:

6.5.7 Corollary. Let G be a linear group over a field of characterisitic p > 0.

Then

RS(G) = λ(G).

We now consider left Sengel elements, heading towards a left Sengel version

of 6.5.7. However, we shall be able to prove more for left Sengel elements,

namely that the left Sengel structure is well-behaved for a reasonable class

of finitary skew linear groups.

6.5.8 Proposition. Let G be a group and L be a local system of G. Then:⋃
H∈L

⋂
H≤K∈L

ξ(K) = ξ(G).

Proof. Let x be in the left hand side of the equation. Then

x ∈
⋂
{ξ(K) : H ≤ K ∈ L}

for some H ∈ L. Let X be any finite subset of G. Now using properties

of L, we have X ⊆ M for some M ∈ L and there is K ∈ L such that

〈X,H〉 ≤ 〈M,H〉 ≤ K. Hence x ∈ ξ(K), so
〈
xK
〉

is locally supersoluble.

Now
〈
xX
〉

is a finitely generated subgroup of
〈
xK
〉
, so

〈
xX
〉

is supersoluble.
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If Y is a finitely generated subgroup of
〈
xG
〉

then Y lies inside some
〈
xX
〉

where X is a finite subset of G. If follows that
〈
xG
〉

is locally supersoluble

and x ∈ ξ(G).

Conversely, if H ≤ K then ξ(H) ⊇ H ∩ ξ(K); for if N is a locally

supersoluble normal subgroup of K then N ∩ H is a locally supersoluble

normal subgroup of H.

Let H,K ∈ L and H ≤ K. Then

H ∩ ξ(G) ⊆ K ∩ ξ(G) ≤ ξ(K),

so

H ∩ ξ(G) ⊆
⋂
{ξ(K) : H ≤ K ∈ L} .

Taking unions over H ∈ L on both sides give us the result, since⋃
H∈L

(H ∩ ξ(G)) =
⋃
H∈L

H ∩ ξ(G)

= G ∩ ξ(G) = ξ(G).

6.5.9 Corollary. Let G be any group and suppose that for every finitely

generated subgroup H of G we have ξ(H) = LS(H). Then

ξ(G) = LS(G).

Proof. Let L be the set of finitely generated subgroups of G. Then L is a local

system of G. Also for any H,K ∈ L, we have H ∩ LS(G) ⊆ LS(K) = ξ(K)

by 6.2.10 and hypothesis. So

H ∩ LS(G) ⊆
⋂
{ξ(K) : H ≤ K ∈ L} .
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By Proposition 6.5.8, we have

LS(G) ⊆
⋃
H∈L

⋂
H≤K∈L

ξ(K) = ξ(G).

The reverse inclusion holds by 6.2.7.

This Corollary tells us about the left Sengel structure of certain finitary

skew linear groups:

6.5.10 Corollary. Let G be a finitary skew linear group over D, a locally

finite-dimensional division F -algebra, where the characteristic of D is prime.

Then LS(G) = ξ(G).

Proof. For the finitely generated subgroups of G are linear over F and F has

positive characterisitic. It remains to apply 6.4.7 and 6.5.9.

Finally, we note the following two corollaries; in the first of these the

groups in question are linear of characteristic zero.

6.5.11 Corollary. If G is polycyclic-by-finite then RS(G) = λ(G) and

LS(G) = ξ(G).

Proof. This follows immediately from 6.4.4 and 6.4.6.

6.5.12 Corollary. If G is locally (polycyclic-by-finite) then LS(G) = ξ(G).

In particular, every locally finite group has this property.

Proof. Every finitely generated subgroup of G satisfies the hypothesis by

6.5.11, so by 6.5.9 the result follows.
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