
Transitioning from a.out to ELF

Memories of upgrading NetBSD 1.4.3 to 1.5

Chris Pinnock

20th August 2022

Transitioning from a.out to ELF 20th August 2022

1 Abstract

The original NetBSD release for PC hardware (i386) used the a.out binary format. At the time, the a.out
format was approaching its shelf life and other projects were switching to the more modern Executable
and Linking Format (ELF) developed for System V Release 4 and adopted earlier by Linux. The NetBSD
1.5 release [18] transitioned the i386 and sparc ports from a.out to ELF. Other ports such as alpha and
pmax were introduced to NetBSD with ELF. In this paper we describe the binary formats and relive
the transition process used by the developers to upgrade a 1.4.3 a.out system to a working ELF-based
system. We will use the QEMU emulator to go back in time to 1999.

2 Disclaimer

Do not attempt to use the images or binaries in any production setting. The images contain software
that is over 20 years old and that has security vulnerabilities. Also in this paper, we will be doing most
operations using a passwordless root account and this is not recommended in production.

Chris Pinnock 1

Transitioning from a.out to ELF 20th August 2022

3 Introduction

Why would anyone write a paper about upgrading between such ancient versions of NetBSD? For several
platforms, including i386 and sparc, the upgrade from 1.4.3 to 1.5 involved a change of executable file
format [18]. The 1.4.3 release used the classical a.out format and for selected platforms, the 1.5 release
used the more modern Executable and Linking Format (ELF) format developed for System V Release 4
and used by Linux.

Most users would have upgraded using the NetBSD installer, but at the time I was following the de-
velopment version of NetBSD between the releases. In 1999, I upgraded using a process designed for
following the bleeding edge development release by building from source [19]. This was done on an
Intel 486DX2-based PC with 16 megabytes of RAM and 1.2 gigabytes of hard disc [12]. In this paper we
will upgrade from 1.4.3 to the last release of the 1.5 branch, 1.5.4.

The order of operations is very important and one wrong step can result in a broken system. The kernel
upgrade is relatively straightforward: one builds a 1.5.4 kernel that is capable of executing both a.out
and ELF binaries. At this point, the kernel is still in a.out format and the system’s boot loader can only
boot a.out kernels. The crux of the upgrade is building a toolchain of compiler, linker and assembler
that are themselves a.out but output ELF binaries. Once this is done, the libraries and rest of user-land
can be built as ELF binaries. Finally the kernel can be changed to an ELF version and the boot loader
can be replaced with one that will boot an ELF kernel.

Recently with the help of the QEMU emulator I revisited the upgrade as a nostalgic exercise. There
is also plenty to learn from the experience as we will see below. In this paper we will describe the
following:

1. Historical aspects of the NetBSD operating system at the time;
2. The object formats a.out and ELF, their history and differences;
3. An overview of upgrading an a.out system to an ELF system.

We describe the upgrade process using the sources and you can follow along with the process using
the QEMU emulator to upgrade from NetBSD 1.4.3 to 1.5.4. We will assume that you know the basics of
the Unix command line. We will also conclude with a brief examination of the build.sh system which
vastly simplifieds source upgrades.

The files and resources mentioned in the paper can be found here: https://chrispinnock.com/2022/08
/20/netbsdaout/

Chris Pinnock 2

https://chrispinnock.com/2022/08/20/netbsdaout/
https://chrispinnock.com/2022/08/20/netbsdaout/

Transitioning from a.out to ELF 20th August 2022

4 NetBSD background

4.1 History

The NetBSD project [20] evolved from the Berkeley Software Distribution (BSD) operating system at
the University of California, Berkeley. The history of the system is widely documented elsewhere but it
has its roots in the PC port 386BSD and 4.4BSD Lite2 [25]. One of the aims of the NetBSD project is to
provide a fully reusable BSD-licensed system [5]. This includes the possibility of forking the code into a
private or commercial project.

Another goal of the project is to provide a portable system running on many hardware platforms and
by the time NetBSD 1.2 was released, it ran on DEC Alpha (alpha), Amiga (amiga), Atari (atari), HP300
(hp300), i386 PCs (i386), m68000 Macintosh (mac68k), PC532 (pc532), DEC MIPS workstations (pmax)
and Sparc systems (sparc) amongst others.

Between the 1.2 [15], 1.3 [16] and 1.4 releases [17], there were major advances including Linux binary
emulation, a user friendly installation process for the PC and the NetBSD packages collection which
took away the hassle of building third-party software.

The a.out format was beginning to show its age and bolting on features to it was becoming difficult.
Linux switched from a.out to the SVR4 format ELF upon the release of Linux 1.2 [1]. The alpha and
pmax ports were officially introduced with ELF in NetBSD 1.2 [15].

What remained were the earlier ports such as the i386 and sparc. The NetBSD 1.5 release switched
binary format to ELF for these platforms. In earlier versions of NetBSD/i386, Linux ELF binaries could
be executed despite ELF not being supported natively.

Despite not support ELF natively, Linux ELF binaries could already be run under emulation on earlier
versions of NetBSD/i386 (see [14] June 1995).

4.2 Navigating the source code

All of the NetBSD source code is available online using the CVS source control system and also viewable
at http://cvsweb.netbsd.org/. We will be examining the system using the NetBSD 1.5.4 source code.
This can be checked out from CVS or you can download it from my website for convenience:

http://downloads.chrispinnock.com/netbsdaoelf/netbsd-1-5.tar.gz

On a NetBSD system, the source code usually lives in the /usr/src directory but it does not have to. From
this section onwards, where we refer to a file in the source tree we will give the relative path. So for
example on the VM, bin/Makefile can be found at /usr/src/bin/Makefile.

Chris Pinnock 3

http://cvsweb.netbsd.org/

Transitioning from a.out to ELF 20th August 2022

The source code contains a top-level Makefile which is referenced by the make program to build the
source code. It also has instructions for updating using the source code in UPDATING and change logs
between versions CHANGES-1-5.{1,2,3,4}. Here is a breakdown of the source code directories for NetBSD
1.5:

Directory Purpose

sys The source code for the kernel

include The C preprocessor header files containing definitions of
functions and system calls

lib The library source code include the standard C library and
math library

bin Source for statically linked binaries required to bring the
system up

sbin As bin but typically requiring super-user (root) privileges

usr.bin Source for general system-wide binaries, usually
dynamically linked

usr.sbin As usr.bin but typically requiring super-user privileges

libexec Source code for binaries that are not directly run by users
(such as Internet daemons)

distrib Architecture specific tools to build the NetBSD release
distribution

etc Default configuration files and tools to configure a system

share Files that are shareable between architectures and
systems, such as make files, time zone information and
manual pages

games Terminal games including Adventure, Hangman, Tetris and
Trek

regress Regression tests for testing changes to software

dist External software in a separate directory to ease import
into the source tree, such as BIND, DHCP and IPFilter

crypto Software distributions of cryptographic software including
Kerberos, OpenSSL and SSH

Chris Pinnock 4

Transitioning from a.out to ELF 20th August 2022

Directory Purpose

gnu Mostly GNU GPL software including the gas (Assembler),
GNU awk, egcs (Compiler), gdb (Debugger), grep and
supporting libraries.

In the early versions of NetBSD, most of the software outside of gnu had a four clause BSD-style license
[5] which allows reuse provided that copyright notices are displayed, the name of the originator is not
used to endorse or promote derived products, and that the software is accepted on an “as-is” basis
without warranty.

Most of the software in gnu was tools subject to the GNU General Public License (GPL) v2 [11]. GPL
software requires the vendor to make source code available if binaries are shipped. This would prevent
use of the code by a private commercial product. It was therefore considered important to keep GPL
software separately from the rest of the sources and attempt to replace the software with BSD-licensed
versions over time.

There is also some non-GPL software in gnu such as sendmail due to the non-commercial use license.
In the latest versions of NetBSD, all external software regardless of license can be found in the external
directory filed by license-type, replacing most of dist and all of the gnu directory.

It should be noted that due to the broad range of hardware support of gcc, the GNU assembler and
compiler software are still the tools of choice in the latest NetBSD releases, but tools such as grep and
gawk have been replaced with other versions.

The cryptographic sources are also kept separately in crypto to keep them out of the main source
tree. NetBSD 1.5 was the first release to integrate Kerberos, OpenSSL and Secure Shell (SSH) into the
operating system. Exporting cryptographic software from the USA was restricted by US law. Such
software was treated as munitions until 1992. At the time of the NetBSD 1.5 release, the USA was relaxing
its approach to export but some restrictions are still in place [9]. It is possible to set an environment
variable to prevent cryptographic software from building and in fact we will use this to simplify our
first build below.

On older systems, the BIOS and bootloader could not always boot from a large partition. Usually the
system would have a small root partition and a larger /usr partition. The system libraries would be in
/usr. The binaries in /bin and /sbin in the root partition needed to be statically linked so that the system
would boot before /usr was mounted. It also made it easier to recover a damaged system.

On modern systems where it is possible to easier boot by alternate means, from large partitions or
in the cloud where systems can be brought up and down very easily, the static linking is no longer a

Chris Pinnock 5

Transitioning from a.out to ELF 20th August 2022

requirement. More recent versions of NetBSD have switched to dynamically linked binaries in /bin and
/sbin.

The regress directory remains but has been largely replaced by a comprehensive set of tests based on
the Automated Test Framework [3].

The BSD-licensing system has been significantly simplified over the years. The interested reader should
consult [5].

5 Binary object formats

The purest binary format is simply a file of machine instructions, maybe with some data. The file is
loaded into memory and executed directly on the CPU. The DOS .com format is an example of such an
object format. However, even the earliest home computers had ways of setting up program metadata
including a load address and a start execution address.

As years have gone by, things have become more sophisticated. We want to be able to run multiple
processes at the same time and we want to be able to load programs into different memory addresses.
We want to be able to group common functions into shared libraries that can be updated independently
of the other programs. The ability to hold a symbol table in a binary file aids debugging greatly. More
recently, object formats have evolved to allow protection of dynamic data segments versus static
code. We do not want rogue processes to be able to overwrite code segments with bogus or malicious
code.

Typically a binary has a header identifying its type, the machine it is designed to run on, the entry point
and other information for the system to run it correctly. On a modern system with shared libraries, the
linker ld is used to resolve external dependencies in the binary at compile time. The runtime linker ld.so
is used to “interpret” the binary at runtime and ensure that the relevant shared libraries are loaded
into memory. It also ensures that function calls into the libraries are correctly married up with their
target locations in memory.

There are various binary formats in use (see [6]) including a.out, COFF and ELF. Originally, a.out was
superseded by COFF in Unix System V which was in turn replaced by ELF in System V release 4. We will
not describe this format in this paper, because our aim is to migrate a system from a.out to ELF. We
note that the NetBSD/sh3 port (which was incomplete at the time of the 1.5 release) was originally
developed using the COFF binary format.

We now describe a.out and ELF at high-level. The interested reader can find a much more substantial
treatment in [13]. Also [24] describes ELF in the Solaris operating system.

Chris Pinnock 6

Transitioning from a.out to ELF 20th August 2022

5.1 a.out

The original Unix binary format was baptised a.out “a dot out” by Ken Thompson [26]. The name
simply stands for assembler output. It is usually the assembler that produces an object file. The default
filename for the fully linked output of the toolchain is still a.out today.

Figure 1: a.out

The a.out format was not standardised across Unix platforms and we will reference the NetBSD format
[2]. The simplest file consists of a header, executable code (called the text) and initialised data. However,
an a.out binary file consists of up to seven sections:

Section Purpose

Header contains information used to load the file and execute it

Text segment contains the executable instructions

Data segment contains initialised data, loaded into writable memory

Text relocations contains records used by the linker to update pointers in the
text when combining binary files

Data relocations the same, but for the data segment pointers

Symbol table contains records used by the linker to reference addresses of
variables and functions between binary files (such as libraries)

String table Contains strings corresponding to the symbol names

Seperating the text and data allows the operating system to optimise the use of the binary. For
example, it can run two copies of the binary but only hold one copy of the text section in memory

Chris Pinnock 7

Transitioning from a.out to ELF 20th August 2022

whilst maintaining different data sections for each running copy. The text can also be loaded read-only
to prevent tampering during running.

The header is a structure of 8 unsigned long integers (see sys/exec_aout.h) as follows:

Field Purpose

a_midmag The Machine ID and Magic flags (see below)

a_text size of the executable code (text)

a_data size of the initialised data

a_bss size of the bss segment

a_syms size of the symbol table

a_entry the memory address where program execution starts

a_trsize size of the text relocation section

a_drsize size of the data relocation section

The bss1 segment is setup by the kernel when the program is loaded and is a writable area of memory
initialised with zeros.

The first number contains the machine ID and magic2 flags including:

• Flags indicating whether the binary is dynamically linked and containing position independent
code (if it is both, it is a shared library);

• The machine ID indicating which machine the binary is intended to run on (e.g. 0x086 for i386
and 0x08a for Sparc);

• The magic number determining the loading convention of the binary.

When storing a number in computer memory that is larger than one byte, there has to be a convention
on the ordering of the bytes. Modern processors either order their bytes from the least significant
byte to the most significant (6502, ARM, i386) or most significant byte first to the least significant
(6809, Sparc, PowerPC). These are called Little Endian and Big Endian, respectively 3. On a machine
with an i386 processor, the number 0x1234 will be stored as two bytes: 0x34 then 0x12. On the Sparc
architecture, it will be stored the other way around: 0x12 and 0x34. Some modern processors can
switch Endianness at at initialisation.

1There are disagreements about what bss stands for, so we avoid the issue here.
2Magic numbers refer to values that identify things such as file types and file systems.
3The word Endian comes from Gullivers Travels, where the little Endians liked to crack their eggs at the small end and the

big Endians preferred the big end, resulting in a conflict.

Chris Pinnock 8

Transitioning from a.out to ELF 20th August 2022

The a_midmag field is stored in network byte-order which is big Endian. This convention allows all
platforms to interpret it and identify binaries intended for other architectures. In network byte ordering,
the a_midmag field encoding in bits is:

FFFFFFmmmmmmmmmmMMMMMMMMMMMMMMMM

where F is 6-bit flag number, m is a 10-bit machine ID and M is a 16-bit magic number. Fortunately the
operating system provides macros to get the various flags out of the number programmatically so the
systems programmer does not have to worry about the underlying architecture of the system.

The magic number refers to the loading conventions used by the operating system. For the OMAGIC
format, the kernel loads the text and data segments into writable memory. The NMAGIC (new magic)
format improved the use of virtual memory by a.out binaries. The text segment is loaded read-only
and the data segment is loaded into the next page boundary after the text.

To simplify memory management, the virtual memory is divided into pages. The pages can be loaded
on demand from disc and swapped out when not required. The ZMAGIC format introduced alignment
of segments to page boundries to simplify paging into memory but at the cost of some disc space. The
kernel loads pages into memory from the binary file on demand. Later the QMAGIC format achieved
the same pageability but with a smaller binary footprint but was discontinued in NetBSD.

The values representing these formats can be found in Octal in sys/exec_aout.h and for reference here
they are in hexadecimal:

Format Octal Hex
OMAGIC 0407 0x107
NMAGIC 0410 0x108
ZMAGIC 0413 0x10b
QMAGIC 0314 0x0cc

As a worked example, let’s look at /bin/sh. We will examine it from a NetBSD/i386 1.4.3 system. It is
in a.out format and it is statically linked. We’ve modified the hexdump output 4 here to show the 8
unsigned long integers in the header of the binary.

00000000 00 86 01 0b 00 e0 04 00 00 30 00 00 dc 26 00 00
00000010 00 00 00 00 20 10 00 00 00 00 00 00 00 00 00 00

Decoding the header on our little Endian i386 system (note the byte ordering):

• The size of the text is 0x4e000 = 319488 bytes
• The size of the initialised data is 0x3000 = 12288 bytes
• The BSS section will be 0x26dc = 9948 bytes
• The symbol table and relocation sections are empty.

4A hexdump of this binary can be found here http://downloads.chrispinnock.com/netbsdaoelf/bin-sh-hexdump-143.txt.

Chris Pinnock 9

http://downloads.chrispinnock.com/netbsdaoelf/bin-sh-hexdump-143.txt

Transitioning from a.out to ELF 20th August 2022

• The execution will start at 0x1020.

The a_midmag field requires more attention. We ran hexdump on a little Endian system where we see
0x0b018600 and in network byte order this is 0x0086010b.

Exercise: Using bitmaps or using the macros in sys/exec_aout.h convince yourself that:

• the flags are all 0 (so not dynamically linked)
• the machine ID is 0x86 (i386)
• the magic number is 0x010b (ZMAGIC)

The binary is statically linked, so no relocation records or symbols are required. Note also that on
ZMAGIC, the header is included in the text segment. On the i386 platform a binary is usually loaded at
the virtual memory address 0x1000 and hence 0x1020 is the first byte of the executable code after the
a.out header. The file is 0x51000 = 331776 bytes (319488 + 12288) matching our observations in the
header.

There is much more detail than we have covered here, but the general principle is that the binary file
not only contains the computer code to run, but also metadata to tell the operating system about its
nature.

The a.out format has deficiences. For example, there is only one executable segment and modern
languages such as C++ need to include initialisation code that is run before the main entry point and
code that is run after the main program has exited. This can be seen in NetBSD’s Compiler Runtime5

in lib/csu - there are versions for both a.out and ELF. Although it is possible to get by, more features
were needed in the binary format to future-proof it. The ELF format is more flexible and we discuss
this next.

5.2 ELF

The Executable and Linking Format (ELF) was introduced in System V release 4 and consequently
Solaris, and has been adopted by Linux and the BSD operating systems. The format is far more flexible
and is likely to be used for the foreseeable future.

There are four types of ELF file:

1. Relocatable - an object file that still needs to be linked before it can be run
2. Executable - a binary file ready to run except for references to shared libaries that need to be

resolved at runtime

5The Compiler Runtime is code included in each binary and usually includes some architecture specific code (e.g. to initialise
registers).

Chris Pinnock 10

Transitioning from a.out to ELF 20th August 2022

3. Shared Object - a shared library containing symbol information and runtime code that can be
linked at runtime

4. Core file - a file that describes the virtual address space of a process, usually used with a debugger

Figure 2: ELF

Every ELF file starts with a header, which similar to the a.out header can be interpreted on machines
with different byte orders. The ELF file is divided into segments which themselves consist of one or more
sections. The program header table describes the segments and the section header table describes
the sections. A relocatable file will have a program header and an executable file will have a section
header table. A shared object will have both.

After the header, comes the program header table (if present), then the sections/segments followed by
the section header table (if present).

The ELF file can be considered in two ways:

1. The toolchain treats an ELF file by considering it as a group of sections which can be processed
by the linker;

2. The kernel treats the file by considering its segments which can be loaded into memory.

Thus the program header table is important to the toolchain when combining relocatable files and the
section header table is important to the loader when mapping the binary into memory.

The ELF header on NetBSD is as follows (for simplicity we describe the 32-bit version):

Chris Pinnock 11

Transitioning from a.out to ELF 20th August 2022

Field Use

e_ident An array of characters used to identify the binary

e_type Whether the file is Relocatable, Executable, Shared
Object or Core

e_machine Machine type (i386, Sparc, etc)

e_version The version (usually 1)

e_entry The entry point of the program if the file is executable

e_phoff The position of the program header table in the file (or
0 if there isn’t one)

e_shoff The position of the section header table in the file (or 0
if there isn’t one)

e_flags Processor specific flags (out of scope of this paper)

e_ehsize The size of the ELF header

e_phentsize The size of an entry in the program header table (all are
the same size)

e_phnum Number of program header entries

e_shentsize The size of an entry in the section header table

e_shnum Number of section header entries

e_shstrndx The index of the section containing the section name
strings

The e_ident is a string array containing the following:

• A string with the ASCII code 0x7f followed by “ELF”
• The address size of the binary (32 or 64-bit)
• The byte order (little or big Endian)
• The ELF version (usually 1)
• The Operation system ABI identifier - NetBSD has its own identifier but uses System V’s because

it does not deviate from the standard
• The ABI version

By using a string of characters, the order is guaranteed on any system. Once the system has read this
field, it can make adjustments for the byte order in the rest of the file (although it might not be able to

Chris Pinnock 12

Transitioning from a.out to ELF 20th August 2022

execute it).

On a recent NetBSD system, file will identify an ELF binary and library (here on a 64-bit AMD x86-64
system):

% file /bin/sh
/bin/sh: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV),
dynamically linked, interpreter /libexec/ld.elf_so,
for NetBSD 9.99.87, not stripped
% file /lib/libc.so.12.218
/lib/libc.so.12.218: ELF 64-bit LSB shared object, x86-64,
version 1 (SYSV), static-pie linked, for NetBSD 9.99.87,
not stripped

Here we have a 64-bit x86-64 binary using the System V ABI identifier. It is dynamically linked and
contains symbols (it is not stripped). The ld.elf_so runtime linker is used to “interpret” and load the
binary in memory 6

The ELF magic can be seen in a hex dump with the 0x7f byte followed by “ELF”.

00000000 7f 45 4c 46 02 01 01 00 |.ELF....|

The tools available for ELF are far kinder to the system programmer than what is available for a.out.
The readelf command outputs information about the file. For example, the header of /bin/sh:

% readelf -h /bin/sh
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: DYN (Shared object file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x4f70
Start of program headers: 64 (bytes into file)
Start of section headers: 220136 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 8
Size of section headers: 64 (bytes)
Number of section headers: 33
Section header string table index: 31

Exercise Use readelf to inspect the program headers on an executable file and the section headers on

6ELF has the facility to supply an interpreters which is usually the runtime linker but does not have to be.

Chris Pinnock 13

Transitioning from a.out to ELF 20th August 2022

a shared library.

There are various types of sections including:

1. PROGBITS - program “bits” such as executable code, data and debugging symbols
2. SYMTAB - a symbol table containing the symbols needed for the linker
3. DYNTAB - a symbol table containing symbols needed for the dynamic linker
4. STRTAB - a string table (similar to the a.out string table)

Sections also have flags including:

1. ALLOC - the section is memory resident
2. WRITE - the section is writable in memory
3. EXECINSTR - the section contains machine code

Example sections include:

• .text - a section of type PROGBITS with flags ALLOC and EXECINSTR, the direct analogue of the
a.out text section.

• .data - a section of type PROGBITS with flags ALLOC and WRITE, similar to the a.out data section.
• .rodata - similar to .data but without WRITE, so used for read-only data
• .init - PROGBITS with ALLOC and EXECINSTR - similar to .text, but this contains code that is

executed before the main program starts
• .fini - similar to .init, but contains code that is executed after the main program exits

The ability to include sections such as .init and .fini make ELF more suitable for modern languages
that need to do significant initialisation before the actual code runs. These sections are used by the
ELF version of the NetBSD Compile Runtime.

In a relocatable file and a shared object, the section header table holds details of the sections including
their types, sizes and flags.

In an executable file and a shared object, the program header table holds details of the segments in
much the same way, although the information is designed for the kernel to be able to map the program
into memory and execute it.

There is much more detail that we have presented here and the interested reader should consult the
NetBSD ELF manual page [8] and Linkers and Loaders [13] 3.7.

Chris Pinnock 14

Transitioning from a.out to ELF 20th August 2022

6 Recreating the experience

6.1 Overview

As we outlined in the introduction, the approach to upgrading is as follows:

1. Setup our environment - either using a prepared QEMU image or installing one from a NetBSD
1.4.3 ISO (or for the brave a real-life i386 machine);

2. Backup the a.out libraries;
3. Build a new 1.5.4 kernel enabled for ELF binaries but with a compatibility layer for a.out;
4. Setup the environment to build 1.5.4;
5. Build a toolchain that is a.out itself but outputs ELF binaries;
6. Rebuild the includes files and key libraries in ELF format;
7. Rebuild the user-land;
8. Build an ELF kernel and new boot loader.

The method that this paper is based on was written by Christos Zoulas in 1999 [19] with work undertaken
by the NetBSD development team, notably Paul Kranenburg who worked on the NetBSD/sparc port.

6.2 Setting up QEMU

QEMU emulates many system architectures including i386 architecture. You can get prebuilt QEMU
binaries on most platforms. On the BSD operating systems, QEMU is available in the packages or ports
collections, on macOS, QEMU is available in homebrew and on Debian/Ubuntu Linux it can be installed
with apt.

NetBSD from source
cd /usr/pkgsrc/emulators/qemu && make install
or using pkgin
pkgin install qemu

OpenBSD
pkg_add qemu

FreeBSD
pkg install qemu

Debian/Ubuntu Linux
apt install qemu

macOS (with Homebrew, https://brew.sh)
brew install qemu

Chris Pinnock 15

Transitioning from a.out to ELF 20th August 2022

From now on where you see % in the commands text, it will mean a command line prompt on the host
machine running QEMU and usually # will refer to a command line prompt on the QEMU emulator. In
quoted shell code, # will refer to a comment.

I have provided an image of NetBSD 1.4.3 with the sources ready for 1.5.4. To get the image use your
favourite web browser, ftp -a, wget or curl. Once downloaded, decompress the file with bunzip2 and
run QEMU.

% wget http://downloads.chrispinnock.com/netbsdaoelf/netbsd-disk-i386-143.
img.bz2

% cp netbsd-disk-i386-143.img.bz2 netbsd-disk-i386-143.img.bz2.backup
% bunzip2 netbsd-disk-i386-143.img.bz2
% qemu-system-i386 -hda netbsd-disk-i386-143.img \

-net user -net nic,model=ne2k_pci -boot c -display curses

Not all QEMU installations support the -display curses option. You can remove it from the command
line and QEMU will use a graphics window instead of the terminal. However, it will be easier to copy
and paste strings into the terminal if you use curses.

6.3 Installation from ISO

Alternatively I have provided an ISO image of 1.4.3 should you want to install the operating system
from scratch yourself.

Chris Pinnock 16

Transitioning from a.out to ELF 20th August 2022

% wget http://downloads.chrispinnock.com/netbsdaoelf/NetBSD143.iso.bz2
% bunzip2 NetBSD143.iso.bz2
% qemu-img create -f qcow2 netbsd-disk-i386.img 20G
% qemu-system-i386 -hda netbsd-disk-i386.img \

-net user -net nic,model=ne2k_pci -cdrom NetBSD143.iso \
-boot d -display curses

If you choose to install the image yourself, you will need to get a copy of the NetBSD 1.5.4 sources. I
have provided these at the same site and they can be decompressed to /usr/src. For example, from the
installed VM:

% cd /usr
% ftp -a http://downloads.chrispinnock.com/netbsdaoelf/netbsd-1-5.tar.gz
% tar zxf netbsd-1-5.tar.gz

6.4 Orientating the virtual machine

Once booted, you will be about to log in as root with an empty password. Welcome to 1999. The
consumer PC hardware was 32-bit and NetBSD supported the 386DX up to the 686-class Pentium II.
There was no ssh or cvs in the default installation. The shell was csh by default for root. But the system
was complete in the sense that it could build itself, provide a complete development environment and
a complete workstation environment with X windows.

Furthermore, many software packages were available in the NetBSD packages collection [21] and Linux
software could be run under emulation. In particularly, the Netscape browser worked very well.

The virtual machine image provided has some configuration and source ready to speed up the pro-
cess:

1. The source code for 1.5.4 can be found in /usr/src.
2. The virtual machine has been setup to use DHCP and get an IP address. The dhclient process will

try to get addresses on all interfaces. It can either be reconfigured (exercise for the reader with
rc.conf) or safely killed if you don’t need network access.

3. csh can be a little cumbersome to use and it shows its age. I have compiled an old version of
tcsh compatible with this version of NetBSD. You can download it from my website. If network
connectivity is working on your virtual machine, this should work:

ftp -a http://downloads.chrispinnock.com/netbsdaoelf/tcsh-netbsd-143-
aout.gz

gunzip tcsh-netbsd-143-aout.gz
chmod +x tcsh-netbsd-143-aout
./tcsh-netbsd-143-aout

Chris Pinnock 17

Transitioning from a.out to ELF 20th August 2022

6.5 Backups and preserving the a.out libraries

If you were doing this on a live production system, you would take copious backups at this point. The
beauty of recreating the upgrade with an emulator is that you can start again from the initial image
should something go wrong.

However we do need to preserve the a.out versions of the system libraries. The libraries are common
routines and functions used by other programs. The most important one is the standard C library.

We mentioned in the introduction that NetBSD introduced Linux emulation in 1.2. The Linux shared
libraries are placed in /emul/linux and are used in preference to the regular libraries when executing a
Linux binary.

In the next step, we will add an option to the kernel, COMPAT_AOUT, which will enable it to run a.out
binaries even when the system is setup for ELF binaries by referencing another directory /emul/a.out
for the a.out libraries.

We copy the existing a.out libraries into /emul/aout. Here we have included the X11 libraries as well,
but they are not essential for our simulation.

mkdir -p /emul/aout/usr/lib /emul/aout/usr/X11R6/lib
cp -p /usr/lib/*.so* /emul/aout/usr/lib/
cp -p /usr/X11R6/lib/*.so* /emul/aout/usr/X11R6/lib/

When the kernel runs an a.out binary, it will use the file hierarchy in /emul/aout before using the files
in the regular directories. It’s vital we do this because at one point of the upgrade we will update the
libraries in /usr/lib with ELF versions.

At any stage of the process, if you want to make a backup, the easiest way to do it is to halt the NetBSD
virtual machine, make a copy of the hard disc image and restart it.

6.6 Building a new kernel

Now you have a working NetBSD/i386 1.4.3 system with the sources for 1.5.4 in /usr/src. It’s time to
build a new kernel. In order to do this we will use the config command to setup the build, but we will
need to update config first so that it understands all the options in our kernel configuration file.

cd /usr/src/usr.sbin/config
make && make install

Now to make our new kernel. We head into the system area of the sources and edit the GENERIC
configuration file to add some options. The GENERIC kernel configuration is designed to run on most
hardware available. We could trim down the configuration to just the things we need, but we leave this
as an exercise for the reader.

Chris Pinnock 18

Transitioning from a.out to ELF 20th August 2022

We need to make sure that the following options are in the configuration file. When the team wrote the
ELF FAQ [19] over 20 years ago, it was written with the development version in mind. Strictly we should
not have to add these options - they will be somewhere in the kernel build files, but to be sure let’s add
them and understand what they will do.

options EXEC_ELF
options COMPAT_AOUT

You can add them near to the Compatibility Options section in the GENERIC file but order typically
does not matter. The first option includes kernel support to execute the ELF binaries. The second
provides options to execute the a.out binary format but also to help the linker transparently find the
a.out libraries in the emulation directories /emul/aout we made earlier.

We will use ed [7] to put the two lines in the middle of the file. You can use the editor of your choice.

cd /usr/src/sys/arch/i386/conf
ed GENERIC
71p
a
options EXEC_ELF
options COMPAT_AOUT
.
wq

Once this is done, you can configure and build the kernel.

config GENERIC
cd ../compile/GENERIC
make depend && make

The make depend step ensures that a dependency tree is setup that make can use to correctly build all
the necessary source files and drivers included in the supplied configuration.

Once the kernel is built, we preserve the current 1.4.3 kernel, copy the new one into place and reboot. I
have also kept a second copy of the 1.5.4 kernel.

cp /netbsd /netbsd.143
cp netbsd /netbsd.154.aout
cp netbsd /netbsd
shutdown -r now

Building a kernel for the latest NetBSD version can be done with exactly the same process today (or, of
course, one can also use build.sh which we will describe later).

Chris Pinnock 19

Transitioning from a.out to ELF 20th August 2022

6.7 Setting up to build user-land

The system should have rebooted and you can log in as root with an empty password. If you prefer to
use tcsh, please run it again now. You will observe that some things in user-land are not working as
they should. For example, ps cannot converse with new kernel properly:

ps aux
ps: proc size mismatch (10192 total, 680 chunks)
ps: statfs on /proc failed: No such file or directory
ps: fallback on /proc-based lookup also failed. Giving up...

This will be fixed later when we rebuild ps and the rest of user-land.

The tool that builds the software on NetBSD is make. The supporting Makefiles in NetBSD 1.5 changed
significantly from 1.4.3 and the newer version of make is needed to understand them properly.

First we rebuild make and install it. We also clean the directory afterwards because later on we want to
build an ELF version of it and it is better that there are no object files around.

cd /usr/src/usr.bin/make
make && make install && make clean

Then install the new system makefiles. These are used in the source files to avoid repeating common
routines and set default targets such as “build”, “install” and others.

cd /usr/src/share/mk && make install

6.8 Build variables

If you do not want to understand details about the make variables we will use, you can safely skip this
section.

The NetBSD system has a set of default Makefiles in /usr/share/mk. These files contain common
routines to make life easier for the developer. For example, bin/Makefile is incredibly simple to specify
by including the common file bsd.subdir.mk and setting the SUBDIR variable to the directories that
need to be traversed to build the binaries.

$NetBSD: Makefile,v 1.18 1999/11/23 05:28:15 mrg Exp $
@(#)Makefile 8.1 (Berkeley) 5/31/93

SUBDIR=cat chio chmod cp csh date dd df domainname echo ed expr hostname \
kill ksh ln ls mkdir mt mv pax ps pwd rcp rcmd rm rmdir sh \
sleep stty sync test

.include <bsd.subdir.mk>

Chris Pinnock 20

Transitioning from a.out to ELF 20th August 2022

Similar bin/cat/Makefile for the program cat contains just enough that when including bsd.prog.mk,
make will build the cat binary and manual pages. We will see what the WARNS variable does later.

$NetBSD: Makefile,v 1.9 1999/07/08 01:56:09 christos Exp $
@(#)Makefile 8.1 (Berkeley) 5/31/93

WARNS=2
PROG= cat

.include <bsd.prog.mk>

Throughout the course of the rebuild, we will set environment variables to change the way in which
the binaries are built. For example, we will initially set OBJECT_FMT to a.out and make will use this
variable.

% setenv OBJECT_FMT a.out

We will assume csh/tcsh syntax throughout the paper and use setenv. If you have decided to use sh,
ksh or similar, you will need to do something different:

$ OBJECT_FMT=a.out
$ export OBJECT_FMT

The variables we will set are as follows, mostly in the environment but sometimes directly to make.

• OBJECT_FMT
• BOOTSTRAP_ELF
• MKCRYPTO
• NOGCCERROR
• NOLINT
• WARNS

All make variables pertinent to the build are documented in share/mk/bsd.README. In the previous
section, we have installed the 1.5.4 versions on our system. Let’s look through these files to see their
impact.

1. OBJECT_FMT

This make variable is used to control the binary format outputted by the compiler toolchain. By default,
the 1.5 Makefile support files set this variable to “ELF” for ports including alpha, i386, pmax, powerpc,
and sparc. For the sh3 port, it would be set to “COFF”. For every other port, it was set to “a.out”.

We will use this variable in the first instance (together with BOOTSTRAP_ELF) to build a compiler
toolchain from the 1.5.4 sources that are a.out binaries themselves but will output ELF binaries when
run.

Chris Pinnock 21

Transitioning from a.out to ELF 20th August 2022

Exercise: Using grep, search the 1.5.4 sources for OBJECT_FMT and see if you can see what the
outcomes on the i386 platform are when it is set to “a.out” or “ELF”.

For example, in libexec/ld.elf_so/Makefile (the Makefile of the ELF loader), the vast majority of the file is
ignored if OBJECT_FMT is not set to “ELF” and so the ld.elf_so would not be build when OBJECT_FMT
is set to “a.out”.

As you would expect, the variable appears in the Makefiles for the compiler and assembler (amongst
others) because it will affect how they are built. Similarly the correct Compiler Runtime will be included
in the outputted binary.

You do not have to understand all of the implications here before moving on. The key takeaway is that
the variable controls the outputted binary format.

2. BOOTSTRAP_ELF

This variable can be found in the following programs and libraries, namely the toolchains:

• gdb - the GNU Debugger
• gas - the GNU Assembler
• egcs - the GNU Compiler 7

• ld - the GNU linker
• libbfd - the Object File library, which provides an abstraction to the object file library regardless

of format.

% grep -rl BOOTSTRAP_ELF *
gnu/usr.bin/gdb/Makefile
gnu/usr.bin/gas.new/arch/m68k/Makefile.inc
gnu/usr.bin/gas.new/arch/i386/Makefile.inc
gnu/usr.bin/gas.new/arch/sparc/Makefile.inc
gnu/usr.bin/egcs/Makefile.inc
gnu/usr.bin/ld.new/Makefile
gnu/lib/libbfd/Makefile

The assembler and linker have .new in their directory names because it is sometimes necessary to
have two versions of the programs in the NetBSD source tree whilst migrating between them.

The purpose of the variable is to change the development environment to create a toolchain that
outputs ELF binaries instead of a.out binaries, that is, to bootstrap an ELF environment.

We will not need to build the debugger (gdb) as part of our bootstrap process, but it would have been
important to the developers at the time when working on the migration between a.out to ELF.

Let’s look at an example from above to see what is happening. From gnu/usr.bin/gas.new/arch/i386/Makefile.inc,
-DDEFAULT_ELF is being added to the preprocessor flags. Within the gas sources, DEFAULT_ELF is

7At the time the GCC project had forked into two projects, gcc and egcs. They eventually merged back into one.

Chris Pinnock 22

Transitioning from a.out to ELF 20th August 2022

used as a preprocessor variable to include different code segments that will result in the assembler
outputting ELF files.

.if (${OBJECT_FMT} == "ELF") || defined(BOOTSTRAP_ELF)
OBJ_FORMAT_C= obj-elf.c
CPPFLAGS+=-DDEFAULT_ELF
.else
OBJ_FORMAT_C= obj-aout.c
.endif

Similarly the egcs Makefile adds -DDEFAULT_ELF to the preprocessor flags. If you want more detail
here, please look at the sources in the gnu directory.

3. MKCRYPTO

If this variable is set to “no”, certain programs and libraries containing cryptographic code will not be
built. We discussed the implications of cryptographic code earlier. However it may be desirable to
remove such software if the target system is constrained on CPU and memory.

One can see this in lib/Makefile, but in other places too. The library subdirectories below are skipped if
MKCRYPTO is set to no.

.if (${MKCRYPTO} != "no")
OpenSSL libraries. NOTE! WE DO NOT TRAVERSE INTO libdes FOR A REASON!
SUBDIR+= libcrypto libssl

:# Heimdal Kerberos 5 libraries
SUBDIR+= libroken libvers libcom_err libsl libss libasn1 libkrb5 libhdb \

libkadm5srv libkadm5clnt libgssapi

KTH Kerberos 4 libraries
SUBDIR+= libkrb libkdb libkadm libkafs
SUBDIR+= libkstream

.if (${MKCRYPTO_IDEA} != "no")
SUBDIR+= libcrypto_idea
.endif # MKCRYPTO_IDEA != no

.if (${MKCRYPTO_MDC2} != "no")
SUBDIR+= libcrypto_mdc2
.endif # MKCRYPTO_MDC2 != no

.if (${MKCRYPTO_RC5} != "no")
SUBDIR+= libcrypto_rc5
.endif # MKCRYPTO_RC5 != no

.endif # MKCRYPTO != no

We will set MKCRYPTO to no on the first build to reduce the complexity of the build.

Chris Pinnock 23

Transitioning from a.out to ELF 20th August 2022

5. NOLINT

The lint program is used to check code for common coding mistakes, bugs, portability errors and use of
best practices. The build system will normally attempt to build “lint libraries” for library functions and
these are used to check programs for compatibility by lint. We will turn this off to avoid initial build
problems by setting NOLINT.

6. WARNS and NOGCCERROR

If the WARNS variable is defined, the common routines from bsd.sys.mk will set extra compiler flags
so that the compiler warns on certain bad programming practices. In most places (see for example
bin/Makefile.inc), WARNS=1, but some programs can build with WARNS=2 (e.g. bin/cat as we saw above).
Here is the Makefile code:

.if defined(WARNS)

.if ${WARNS} > 0
CFLAGS+= -Wall -Wstrict-prototypes -Wmissing-prototypes -Wpointer-arith
XXX Delete -Wuninitialized by default for now -- the compiler doesn't
XXX always get it right.
CFLAGS+= -Wno-uninitialized
.endif
.if ${WARNS} > 1
CFLAGS+=-Wreturn-type -Wcast-qual -Wpointer-arith -Wwrite-strings
CFLAGS+=-Wswitch -Wshadow
.endif
.endif

If NOGCCERROR is set, the compiler will just warn and not exit. The default behaviour is to exit with an
error by adding the compiler flag -Werror.

.if !defined(NOGCCERROR)
CFLAGS+= -Werror
.endif

Please refer to the GCC [10] manual for documentation on the warning types. One example -Wmissing-
prototypes will cause the compiler to complain if a function is not correctly defined. In one place during
the build we will set WARNS=0 to avoid the build stopping.

It should not be necessary to set WARNS, NOGCCERROR and NOLINT normally. By setting them, we
will remove safeguards from the build process. We will take it on faith that the code is correct or good
enough to build to get us to the next stage.

Chris Pinnock 24

Transitioning from a.out to ELF 20th August 2022

6.9 Building the toolchain

Now we get onto the hardest bit of the upgrade. We must construct a compiler, assembler and linker
that are a.out format but output ELF binaries. We need to build them and not install them individually,
but install them at the same time so that they work together properly.

As we have described above, the 1.5.4 Makefiles support the transition. To ensure that the desired
toolchain is built with the a.out object format, set the following environment variables8 :

setenv OBJECT_FMT a.out
setenv BOOTSTRAP_ELF yes

Now bootstrap the toolchain in this order. First we build the Object File library (libbfd), then we build
the binary utilities (binutils) for manipulating object files. Then we build the assembler (gas.new), the
linker (ld.new) and finally the compiler (egcs).

Do not accidentally make install at this stage. The tools are a.out binaries that output and process ELF
binaries. Therefore the tools need to be installed at the same time for them to work together properly.
If one of them is installed before the others are ready, they will not work together correctly.

cd /usr/src/gnu/lib/libbfd && make
cd /usr/src/gnu/usr.bin/binutils && make
cd ../gas.new && make
cd ../ld.new && make
cd ../egcs && make

Now we can install all of the tools above. We will also clean the directories, because later on we will
want to build ELF versions of them. Do not install the libbfd library - the other binaries use what has
been built in the libbfd directory.

cd /usr/src/gnu/usr.bin/binutils && make install
cd ../gas.new && make install
cd ../ld.new && make install
cd ../egcs && make install

We have crossed the first hurdle. The next step is to start building ELF libraries and binaries, but first
we need to clean up to remove any a.out objects in the source tree. For example, the tools we just
installed will have a.out objects and we want to rebuild them as ELF binaries in the next step.

cd /usr/src && make cleandir

8The original ELF FAQ [19] suggests setting DESTDIR to /../. to ensure that the resultant binaries are installed in the correct
root directory and not the emulation directories /emul but I have not found this necessary with the sources used in this
paper.

Chris Pinnock 25

Transitioning from a.out to ELF 20th August 2022

6.10 Rebuilding the key libraries

Now we need to tell our Makefiles we intend to output ELF files. Also we may will encounter some
minor errors and source code checking, so we will ignore any warnings from the compiler. NetBSD 1.5
and later included libraries and tools with cryptographic software. On the first build, we can ignore
these tools to simplify and speed up the build. We set three environment variables to instruct make to
behave to our demands.

setenv OBJECT_FMT ELF
setenv NOGCCERROR
setenv MKCRYPTO no

Before we start to build the libraries and binaries, we need to install the latest includes files. These are
the .h files used by the sources for definitions of functions and structures.

cd /usr/src
make includes

We need to build the Compiler Runtime support before anything else. Part of the Compiler Runtime is
specific to the target architecture and is written in assembly language. Essentially it provides supporting
code to initialise and exit programs. We need to build up to date ELF compatible versions of these
objects and they will use the .init and .fini sections we described earlier.

cd /usr/src/lib/csu
make
make install

We now make and install ELF versions of all of the standard NetBSD libraries. This includes in the
standard C library, the standard mathematics library and so on. We set the make variable NOLINT to 1
here because we want to avoid checking the code for errors with lint - we’ll take it on good faith that
the sources work.

cd /usr/src/lib
make NOLINT=1
make NOLINT=1 install

The next step is to build and install the ELF runtime linker. This tool is responsible for loading the
necessary shared libraries into memory when executing an ELF binary.

cd /usr/src/libexec/ld.elf_so
make
make install

And finally we build ELF versions of the GPL licensed libraries.

cd /usr/src/gnu/lib

Chris Pinnock 26

Transitioning from a.out to ELF 20th August 2022

make
make install

Now we have a system with ELF libraries ready to be linked with freshly built ELF binaries.

6.11 Finalising userland

To make life easier, we will upgrade two tools that are commonly used in the build. The first is lint
which is used to check source files for potential errors. The second is yacc which is used to build C
source code files from language grammar files. By rebuilding these now, we will avoid warnings and
build errors9.

cd /usr/src/usr.bin/xlint && make && make install
cd ../yacc && make && make install

Now we can complete our installation of everything that is left, using objects we have compiled already.
This part of the build takes the longest time and again we ask the compiler to continue even after a
warning.

cd /usr/src && make WARNS=0 && make install

Once this is finished, the system will be in ELF format, except for the cryptographic sources. For example,
the Bourne shell is now built and ready to run in ELF format, statically linked, the vi editor is built
dynamically linked and the C library is built as an ELF shared object.

file /bin/sh /usr/bin/vi /usr/lib/libc.so.12.62.1
/bin/sh: ELF 32-bit LSB executable, Intel 80386, version

1, statically linked, stripped
/usr/bin/vi: ELF 32-bit LSB executable, Intel 80386, version

1, dynamically linked (uses shared libs), stripped
/usr/lib/libc.so.12.62.1: ELF 32-bit LSB shared object, Intel 80386,

version 1, not stripped

Finally we can make the whole system again without the relaxation of compiler warnings and including
the cryptographic sources. The build target builds and installs everything in the right place. It is safest
to clean up older objects just in case.

unsetenv MKCRYPTO
make cleandir
make build

9specifically, there are lots of warnings/errors if lint is not up to date and errors when building ftpd if yacc is not up to date.
These errors may interrupt the build.

Chris Pinnock 27

Transitioning from a.out to ELF 20th August 2022

6.12 Finishing with an ELF kernel

We have built libraries and binaries in ELF format and the only thing left to address is the kernel, which
is still an a.out binary. Before we update the kernel, we must update the boot blocks to a version that
understands how to load an ELF file otherwise we will not be able to boot the system. Let’s tackle this
first.

The directory /usr/mdec contains machine dependent files including the boot loaders. The recent make
build process will have installed the latest versions 10.

cd /usr/mdec
./installboot ./biosboot.sym /dev/rwd0a

Now back to the new kernel. First we clean our compile directory to remove any a.out objects, recon-
figure and rebuild:

rm -rf /usr/src/sys/arch/i386/compile/GENERIC
cd /usr/src/sys/arch/i386/conf
config GENERIC
cd ../compile/GENERIC
make depend && make

Once built, we preserve a copy of the new kernel, install it and reboot.

cp netbsd /netbsd.154.elf
cp netbsd /netbsd
shutdown -r now

The system should reboot properly and we have finished our upgrade, other than perhaps tidying up a
few files in /etc.

file /netbsd*
/netbsd: ELF 32-bit LSB executable, Intel 80386, version 1,

statically linked, not stripped
/netbsd.143: NetBSD/i386 demand paged executable not stripped
/netbsd.154.aout: NetBSD/i386 demand paged executable not stripped
/netbsd.154.elf: ELF 32-bit LSB executable, Intel 80386, version 1,

statically linked, not stripped

If we were doing this for real, we would now go and recompile all of our third-party software in the
new binary format. We don’t need to do this in our example and we can safely remove the /emul/aout
directory.

10NetBSD 1.5 was the first release to ship with a boot block biosboot_com0.sym used to boot on a serial console. This is
useful for headless servers and also useful in virtual machine environments such as QEMU.

Chris Pinnock 28

Transitioning from a.out to ELF 20th August 2022

7 Exercise

Now that we have completed the upgrade from 1.4.3 to 1.5.4 on NetBSD/i386, we can perform a similar
operation on NetBSD/sparc. I have provided an ISO image of the NetBSD/sparc 1.4.3 installer and this
will boot on the QEMU Sparc emulator.11

% wget http://downloads.chrispinnock.com/netbsdaoelf/NetBSD143-sparc.iso.
bz2

% bunzip2 NetBSD143-sparc.iso.bz2
% qemu-img create -f qcow2 netbsd-disk-sparc.img 20G
% qemu-system-sparc -hda netbsd-disk-sparc.img \

-net user -net nic -cdrom NetBSD143-sparc.iso -boot d -nographic

Once installed, you can shutdown the VM and restart the VM:

% qemu-system-sparc -hda netbsd-disk-sparc.img \
-net user -net nic -boot c -nographic

Then on the VM download the sources and proceed with the upgrade (using tcsh is optional):

dhclient
ftp -a http://downloads.chrispinnock.com/netbsdaoelf/tcsh-netbsd-143-

sparc-aout.gz
gunzip tcsh-netbsd-143-sparc-aout.gz
chmod +x tcsh-netbsd-143-sparc-aout
./tcsh-netbsd-143-sparc-aout
cd /usr
ftp -a http://downloads.chrispinnock.com/netbsdaoelf/netbsd-1-5.tar.gz
tar zxf netbsd-1-5.tar.gz

To edit files, you will need to set the term variable appropriately. It’s likely that you are working on an
xterm compatible terminal, so in csh and tcsh you can use:

set term = xterm

Remember you are building for the sparc platform, not i386, so the system files will be in sys/arch/s-
parc.

When building the kernel, you will need to workaround some errors. You can work around them as
follows - this is not particularly elegant, but will get us to where we need to be. Some hints:

1. Temporarily remove or comment out the memcpy definitions from sys/lib/libkern/libkern.h to
avoid conflicts with existing definitions:

167 int memcmp __P((const void *, const void *, size_t));

11At the time of writing, under the QEMU 9.2 Sparc emulator on Mac, NetBSD/sparc 1.4.3 crashes when using a graphic
console (i.e. without -nographic).

Chris Pinnock 29

Transitioning from a.out to ELF 20th August 2022

168 void *memcpy __P((void *, const void *, size_t));
170 void *memset __P((void *, int, size_t));

2. Remove bpf and dependencies from the kernel (you can live without these temporarily). Remove
these lines (assuming you have not edited GENERIC):

183 options PPP_FILTER # Add active filters for ppp (via
bpf)

488 pseudo-device bpfilter 8
500 pseudo-device vlan

Both these can be achieved as follows:

cd /usr/src/sys/lib/libkern/
cp -p libkern.h libkern.h.orig
ed libkern.h
170d
167,168d
wq
cd /usr/src/sys/arch/sparc/conf
cp GENERIC GENERIC.orig
ed GENERIC
183d
488d
500d
wq

3. After a successful kernel build, put these changes back.

cd /usr/src/sys
cp lib/libkern/libkern.h.orig lib/libkern/libkern.h
cp arch/sparc/conf/GENERIC.orig arch/sparc/conf/GENERIC

4. The boot block will need to be replaced before you can install an ELF kernel. To do this you will
need to boot single user mode12. Run QEMU as above but add -prom-env ‘auto-boot?=false’ to
the command line flags, then:

boot disk:a -s
<system boots>

fsck -a
mount -a

See the installboot manual page for more details.

12or you can build a kernel with options INSECURE and boot that.

Chris Pinnock 30

Transitioning from a.out to ELF 20th August 2022

8 Going forward

The NetBSD project has always focused on clean code and portability. During the time frame that I
have examined in this paper, the project team were thinking about the portability of the build system.
The original goal of the build system project was to be able to build NetBSD on any relatively modern
standards compliant Unix-like system with a standard C compiler. This has been a very successful
project and probably one of the largest projects written in POSIX-compliant shell.

NetBSD 1.6 introduced the build.sh cross-compilation build system [4]. What build.sh does is setup a
toolchain consisting of make, the compiler, assembler, linker and other tools to build NetBSD. Today’s
version works on multiple operating systems (Linux, Darwin, OpenBSD, FreeBSD) and it output binaries
for all of the supported NetBSD architectures.

The first thing it does is builds the toolchain for the chosen target architecture. The toolchain is installed
in a separate directory to the host machine’s binaries. Then build.sh builds the libraries and user-land
binaries. It can also build kernels and the full release media for the operating system.

There are many obvious advantages to this. Firstly it is possible to build all of the releases from one
fast machine. Before build.sh, each port master had to build a release and the project had to wait for
the slowest architectures to complete. Secondly, it is possible to target embedded environments easily
without having a development system onboard. Thirdly, adding new architectures is made easier for
the same reason. A final reason to mention is that a daily build of the development version can be
done quickly for all architectures to ensure that there are no build errors.

In this paper we saw how to upgrade an earlier version by building a toolchain and then use it to build
the binaries. In the future, if the NetBSD project decided to change binary format again, the process
would be much easier because build.sh would handle it without being intrusive to the host system.

If you have understood the steps in this paper, you will be able to understand the ideas in build.sh. In
newer versions of NetBSD, it is possible to upgrade the system using config and make with the sources,
but it is far more convenient to use build.sh these days.

Here is the power of build.sh. Download the latest sources for NetBSD and in the source directory you
can build an entire release for your current system or build a kernel. There is no need to change any
tools on the host system - build.sh does the work for you, provided that your system is recent enough.

./build.sh release
./build.sh kernel=GENERIC

If you do not have root access on the system and you can build without privileges to a directory that
you have access to. For example:

% ./build.sh -O ~/objects -U release

Chris Pinnock 31

Transitioning from a.out to ELF 20th August 2022

And you can choose any architecture that NetBSD supports as a target. So to build a complete release
for alpha:

% ./build.sh -O ~/objects -U -m alpha release

Efforts have been made to move towards a compiler with a license nearer to the BSD license, but the
broad platform support of gcc has kept it as the compiler of choice in the NetBSD tree.

At the time of writing, all of the supported NetBSD platforms are ELF based, with the possible exception
of some requiring a differently formatted kernel file in order to boot. There is one platform, sun2, that
does not support dynamically linked libraries but all the others do.

From the latest share/mk/bsd.own.mk:

OBJECT_FMT: currently either "ELF" or "a.out".
#
All platforms are ELF.
#
OBJECT_FMT= ELF

Unfortunately some platforms have been discontinued due to the lack of compiler support. For example
the pc532 platform [22] (of which there are only approximately 100 machines manufactured 13) uses
the ns32k chipset which is not supported by an up to date version of gcc. Sadly this platform was never
converted to ELF before it was discontinued 14.

We hope that this paper has contributed to your understanding of binary formats but has also given
you an insight into a working operating system from over 20 years ago.

9 Acknowledgements

The author would like to thank Simon Burge, Perry Metzger, Jason Thorpe and Christos Zoulas for their
help with the history on this paper. The upgrade method described in the paper was developed by
Christos in an early version of the NetBSD ELF How-to [19]. Also thanks to Craig Buckler who made
some useful suggestions and Arrigo Triulzi who painstakingly ran all the commands to check nothing
was missed.

10 References

[1] a.out binary format, Wikipedia
13One of the NetBSD development team still regularly boots a pc532 machine, although he occasionally has to fight the SCSI

card to get it to work. It runs NetBSD 3.99.16.
14see r1.489.2.4 of share/mk/bsd.own.mk.

Chris Pinnock 32

https://en.wikipedia.org/wiki/a.out

Transitioning from a.out to ELF 20th August 2022

[2] a.out format manual page, The NetBSD Foundation

[3] Automated Test Framework, Wikipedia

[4] build.sh: Cross-building NetBSD, Luke Mewburn & Matthew Green

[5] BSD Licenses, Wikipedia

[6] Comparison of executable file formats, Wikipedia

[7] Ed Mastery: The Standard Unix Text Editor, Michael W. Lucas, Tilted Windmill Press, 2018.

[8] ELF format manual page, The NetBSD Foundation

[9] Export of cryptography from the United States, Wikipedia

[10] GCC manual, GNU Operating System Project.

[11] GNU General Public License v2, GNU Operating System Project

[12] Intel 486DX2 PC boot messages, Chris Pinnock

[13] Linkers and Loaders, John R. Levine, Morgan Kaufmann Publishers, 2000

[14] Make linux ELF binaries work (11/6/95) src/doc/CHANGES.prev, The NetBSD Project

[15] NetBSD 1.2 release announcement, The NetBSD Foundation

[16] NetBSD 1.3 release announcement, The NetBSD Foundation

[17] NetBSD 1.4 release announcement, The NetBSD Foundation

[18] NetBSD 1.5 release announcement, The NetBSD Foundation

[19] NetBSD ELF FAQ (1999 version archived), The NetBSD Foundation

[20] NetBSD History, The NetBSD Foundation

[21] NetBSD packages collection, The NetBSD Foundation

[22] PC532 platform, Wikipedia.

[23] QEMU: A generic and open source machine emulator and virtualizer,

[24] Solaris Internals: 2nd Edition, McDougall and Mauro, Sun Microsystems/Pearson, 2007

[25] The Design and Implementation of the 4.4BSD Operating System, McKusick, Bostic, Karels and
Quarterman, Addison-Wesley, 1996

[26] The Development of the C Language, Dennis M. Ritchie, 1993.

Chris Pinnock 33

https://man.netbsd.org/a.out.5
https://en.wikipedia.org/wiki/Automated_Testing_Framework
http://www.mewburn.net/luke/papers/build.sh.pdf
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Comparison_of_executable_file_formats
https://www.tiltedwindmillpress.com
https://man.netbsd.org/elf.5
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://gcc.gnu.org/onlinedocs/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://downloads.chrispinnock.com/netbsdaoelf/haddock.dmesg.txt
http://cvsweb.netbsd.org/bsdweb.cgi/src/doc/CHANGES.prev?only_with_tag=MAIN
https://www.netbsd.org/releases/formal-1.2/NetBSD-1.2.html
https://www.netbsd.org/releases/formal-1.3/NetBSD-1.3.html
https://www.netbsd.org/releases/formal-1.4/NetBSD-1.4.html
http://www.netbsd.org/releases/formal-1.5/NetBSD-1.5.html
http://downloads.chrispinnock.com/netbsdaoelf/HistoricNetBSDELFFAQ.html
https://www.netbsd.org/about/
http://pkgsrc.org
https://en.wikipedia.org/wiki/PC532
https://www.qemu.org
http://www.bell-labs.com/usr/dmr/www/chist.html

	Abstract
	Disclaimer
	Introduction
	NetBSD background
	History
	Navigating the source code

	Binary object formats
	a.out
	ELF

	Recreating the experience
	Overview
	Setting up QEMU
	Installation from ISO
	Orientating the virtual machine
	Backups and preserving the a.out libraries
	Building a new kernel
	Setting up to build user-land
	Build variables
	Building the toolchain
	Rebuilding the key libraries
	Finalising userland
	Finishing with an ELF kernel

	Exercise
	Going forward
	Acknowledgements
	References

