
NetBSD/i386 from 1.0 to present

Chris Pinnock

23rd September 2022

NetBSD/i386 from 1.0 to present 23rd September 2022

Contents

1 Abstract 3

2 Disclaimer 3

3 Introduction 4

4 NetBSD Background 5

5 Setting up and getting ready 10
5.1 Conventions . 10
5.2 VirtualBox . 10
5.3 Obtaining the media . 10
5.4 Installing NetBSD 1.0 . 11
5.5 Converting to QEMU . 22
5.6 Approach to upgrading by source . 24

6 Upgrading NetBSD 1.0 to 1.1 25

7 Upgrading NetBSD 1.1 to 1.2 28

8 Upgrading NetBSD 1.2 to 1.2.1 30

9 Upgrading NetBSD 1.2.1 to 1.3.3 31

10 Upgrading NetBSD 1.3.3 to 1.4.3 32

11 Upgrading NetBSD 1.4.3 to 1.5.3 34

12 Interlude - Amnesiac needs new (virtual) hardware 35
12.1 New network card . 35
12.2 Bigger hard disc . 36

13 Upgrading NetBSD 1.5.3 to 1.6.2 38

14 Upgrading from 1.6.2 to 2.0.3 39

15 Later releases 40
15.1 Upgrading from 2.1 to 3.1 . 41
15.2 Upgrading from 4 to 5.2 . 42
15.3 Upgrading from 7.2 to 8.2 . 42

Chris Pinnock 1

NetBSD/i386 from 1.0 to present 23rd September 2022

15.4 Miscellaneous problems . 42
15.5 Building 9.2 directly from earlier releases . 43

16 Things I might have done differently 43
16.1 NetBSD 0.8 and 0.9 . 43
16.2 Root Disc . 44

17 Amnesiac, the living VM 44

18 Acknowledgments 44

19 Bibliography 45
19.1 References . 45
19.2 Media . 45

Chris Pinnock 2

NetBSD/i386 from 1.0 to present 23rd September 2022

1 Abstract

Dedicated to William Jolitz, 22/7/1957 - 2/3/2022.

The NetBSD operating system was born in 1993 and is based on the 386BSD operating system. Originally
it only supported i386 PC hardware, but it has grown into a portable system supporting most consumer
computing equipment. During the COVID lockdown, the author took a nostalgic trip down memory
lane and made virtual machine images of older NetBSD versions. In [12] the author describes the
upgrade between NetBSD/i386 1.4.3 and 1.5.4 where the binary object format changed from a.out to
ELF. In this paper we tackle all versions between 1.0 to 1.4.3 and then 1.5.4 to present day upgrading
using the source code and compiler.

2 Disclaimer

Do not attempt to use the images or binaries in any production setting. Some of the images contain
software that has security vulnerabilities. Also in this paper, we will use a password-less root account
and this is not recommended in production.

Chris Pinnock 3

NetBSD/i386 from 1.0 to present 23rd September 2022

3 Introduction

In this document we recreate the upgrades from NetBSD 1.0 to present using the source code and the
compiler. It has always been possible to rebuild the NetBSD operating system [8] using just the tools
that are in its source tree. One early exception was the lack of cvs, but one could obtain the source
code by other means.

We start by setting up a virtual machine called amnesiac with NetBSD/i386 1.0 and upgrade it to the
latest version step by step, using only the source code and compiler. We shall mostly use QEMU [2]
throughout the paper, but to setup the original VM it was easier to use VirtualBox [3] due to its floppy
support. We will work on an Apple Mac (Intel chipset) but the paper can be followed using any modern
environment capable of running VirtualBox, QEMU or Bochs.

As we will discuss later, NetBSD 0.8 and 0.9 are not publicly available, so we start with version 1.0 which
is the earliest version available in the NetBSD Archive [8].

At the end of the process, our system has copieds of the different GENERIC kernels from 1.0 to 9.3.
The present version is over 30 times the size of the 1.0 kernel. If we were doing this with production
hardware, it’s very likely we would have had to change components or upgrade it.

amnesiac# ls -l /netbsd*
-rwxr-xr-x 1 root wheel 19089180 Mar 26 02:47 /netbsd
-rwxr-xr-x 1 root wheel 659600 Mar 13 22:09 /netbsd.10
-rwxr-xr-x 1 root wheel 1332275 Mar 13 22:09 /netbsd.11
-rwxr-xr-x 1 root wheel 1477949 Mar 13 16:13 /netbsd.12
-rwxr-xr-x 1 root wheel 1530049 Mar 13 17:47 /netbsd.121
-rwxr-xr-x 1 root wheel 2211878 Mar 14 02:23 /netbsd.133
-rwxr-xr-x 1 root wheel 3407541 Mar 14 05:12 /netbsd.143
-rwxr-xr-x 1 root wheel 4941157 Mar 14 05:50 /netbsd.154.aout
-rwxr-xr-x 1 root wheel 5048054 Mar 14 09:20 /netbsd.154.elf
-rwxr-xr-x 1 root wheel 6182687 Mar 14 11:53 /netbsd.162
-rwxr-xr-x 1 root wheel 7447216 Mar 14 14:35 /netbsd.203
-rwxr-xr-x 1 root wheel 7476202 Mar 15 01:12 /netbsd.21
-rwxr-xr-x 1 root wheel 8577892 Mar 15 11:50 /netbsd.31
-rwxr-xr-x 1 root wheel 10343742 Mar 15 23:47 /netbsd.4
-rwxr-xr-x 1 root wheel 12002769 Mar 16 05:31 /netbsd.52
-rwxr-xr-x 1 root wheel 13116694 Mar 16 14:53 /netbsd.61
-rwxr-xr-x 1 root wheel 17143555 Mar 17 04:50 /netbsd.72
-rwxr-xr-x 1 root wheel 19695304 Mar 20 09:12 /netbsd.82
-rwxr-xr-x 1 root wheel 20714756 Sep 9 06:32 /netbsd.93

If you follow the upgrade process, please be prepared to dedicate some time to it. It’s possible to
upgrade from 1.0 to 1.3.3 in an afternoon, but between later releases, more time is required. You do
not need to be at the keyboard during each build, but you will need to work on a machine that can run
the emulator uninterrupted.

Chris Pinnock 4

NetBSD/i386 from 1.0 to present 23rd September 2022

4 NetBSD Background

We will only scratch the surface of the history here. The interested reader can consult [1], [5] and [7].

NetBSD has its origins in UNIX, which was born at Bell Laboratories in 1969. The sixth edition of UNIX was
readily available outside of Bell along with its source code. The availability of the source encouraged
others to use the system for research and contribute to it.

The Computer Systems Research Group (CSRG) at University of California, Berkeley (UCB) was one
of many organisations that contributed with the blessing of Bell Laboratories and its parent AT&T. In
order to use UNIX and its variants, one had to purchase a source code license from AT&T, but other than
this, there was relative freedom in what could be done with the system. UCB released their version of
UNIX under the name Berkeley Software Distribution (BSD) and anyone could use it provided they had
an AT&T source code license.

At UCB, work was undertaken by William Jolitz to port BSD to the PC platform based on the Intel 80386
processor. The work was based on the 4.3BSD Net/2 release. Together with his wife Lynne, he released
the port in March 1992 as 386BSD [2] and wrote an accompanying series of articles about the port in Dr
Dobbs [1]. A group of enthusiasts started to contribute patches. There were differences of opinion in
approach with the 386BSD project founders and so not all of the patches made it back into 386BSD,
but they were released as a patch kit.

The NetBSD project was founded in 1993 by Chris Demetriou, Theo de Raadt, Adam Glass and Charles
Hannum. The founders wanted to encourage open collaboration between the developers and continue
to produce a reusable code base in the spirit of the CSRG. The first release 0.8 was derived from 386BSD,
the patch kit and some programs from Net/2 that were missing.

NetBSD 0.8 was available from an FTP site and this was the only way to obtain it. The Net in NetBSD
reflects the use of the Internet and the cooperation over the network to produce the software. The
software had to be downloaded, written onto floppy discs and then loaded onto the machine. The
installation process used a boot disc containing the kernel and a second disc containing the root filesys-
tem. By today’s standards, the installation is involved and error prone 1. A few months later, the team
released NetBSD 0.9 included loadable kernel modules and numerous bug fixes and enhancements.

Around the same time that NetBSD was born, another group of developers who waited a bit longer
for the patches to be accepted into 386BSD, formed the FreeBSD project [6] with the primary goal to
produce a BSD-based operating system for the PC platform.

BSD influenced the UNIX world greatly, leading to commercial UNIX versions such as BSDI and SunOS,
and of course the community projects we see today such as DragonflyBSD, FreeBSD, NetBSD and
OpenBSD. The TCP/IP Internet communication stack we use today is largely based on work at UCB.

1In this paper, we have recreated the experience for NetBSD 1.0 (the installation is similar).

Chris Pinnock 5

NetBSD/i386 from 1.0 to present 23rd September 2022

We should explain why we have decided to start with version 1.0 and not 0.8. AT&T’s licensing subsidiary
UNIX System Laboratory (USL) decided to increase the cost of the UNIX license and consequently
end users of BSD would incur the higher cost. One of the aims of the Net/2 release was to remove
encumbered code from BSD. An effort by Keith Bostic and others, led to the rewrite of many utilities so
that they could be distributed without the AT&T license. By the end of the activity, the license only
applied to six source files. In fact, when Jolitz did his port he rewrote these six files essentially making
the Net/2 release self-sufficient for PC hardware. BSDI also rewrote the files when they started their
operating system work.

BSDI begun to sell their UNIX system for $995 in January 1992. Shortly after, BSDI received a cease-and-
desist letter from USL, requesting that BSDI cease promoting the product as UNIX. USL alleged that the
product contained prioprietary code. As the resulting case developed, BSDI’s claim was that they were
simply distributing the BSD system with six additional files. The judge agreed with their position and
told USL to reorganise its case.

USL was purchased by Novell who settled the case in the summer of 1993. Changes were made to source
code and copyright notices were added where necessary. This led to the 4.4BSD-Lite release which was
unencumbered by legality. Later CSRG released 4.4BSD-Lite release 2 shortly before disbanding [4].

The knock-on effect of the lawsuit for the NetBSD project as a derivative of Net/2 was that the project
had to rebase its code on 4.4BSD/Lite and withdraw 0.8 and 0.9 in case they contained code under
dispute. As a result it is very difficult to find the 0.8 and 0.9 releases on the Internet. NetBSD 1.0 was
released rebased on 4.4BSD/Lite.

The NetBSD project expanded and gained traction, aligning on the following goals:

• Good design, stability, performance
• No encumbering licenses
• Portable code
• Interoperability with other systems
• Comply to Open Standards as much as possible

The vast number of different architectures that NetBSD supports has made it necessary to write clean
and portable machine independent code.

The lawsuit will have influenced the approach on encumbering licenses for software. Omitting some
components such as gcc, NetBSD has always been released using a BSD-style license [3]. This meant
that the code could be reused in almost all situations, including a commercial entity wanting to base a
closed source product on it. This is a different approach to the GNU Public License, where source code
must be distributed with binaries. The debate about which style of license results in the most reusable
set of code is beyond the scope of this paper.

Chris Pinnock 6

NetBSD/i386 from 1.0 to present 23rd September 2022

Later the project formed a core group to oversee development and the NetBSD Foundation to serve as
the legal entity managing the project.

Since version 0.8, there have been many releases. Here we summarise the key features from each
major version (see [7] and [9]).

• 0.8, April 1993

– PC hardware (i386) only release
– 386BSD 0.1 + patch kit
– other programmes from Net/2
– installer and general improvements

• 0.9, August 1993

– Loadable Kernel Modules, allowing new drivers to be added during runtime

• 1.0, November 1994

– Multi-platform release for HP300, Amiga, Mac (68k), Sun (sun4c) and PC532 platforms
– Net/2 derived code replaced by 4.4BSD/Lite code
– Shared libraries
– Kerberos 5 authentication system added

• 1.1, November 1995

– Support for Alpha, Atari and mvme68k platforms
– New generic audio subsystem
– Linux and SunOS emulation, for example allowing PC Linux binaries to run on NetBSD/i386

• 1.2, October 1996

– Network File System v3
– ARM and Sharp x68k platform support

• 1.3, March 1998

– New i386 installer vastly simplifying the installation
– X Windows (XFree86) graphical user interface added to the base system
– ISA Plug’n’Play, PCMCIA, ATAPI and APM support
– Linux ext2 and FAT32 filesystem support
– The NetBSD packages collection, making it easier to install 3rd party software

• 1.4, May 1999

– UVM, a complete rewrite of the virtual memory system improving performance

Chris Pinnock 7

NetBSD/i386 from 1.0 to present 23rd September 2022

– RAIDframe, software RAID system for managing resilience on hard discs
– IP Filter, firewall and packet filter
– USB Support
– Workstation Independent driver framework wscons

• 1.5, December 2000

– IPv6 and IPSec support
– OpenSSL and OpenSSH for secure communications with other systems
– The rc.d system for starting and stopping services
– Migration to the ELF binary format (see [12])
– Kernel tracing tool ktrace
– Filesystem soft dependencies for better crash handling
– Windows NT filesystem support

• 1.6, September 2002

– Unified Buffer Cache, unifying the filesystem and virtual memory caches and improving
system performance

– The build.sh build system is introduced allowing reliable builds of NetBSD (and eventually
cross-builds from other systems)

– Ten new platforms
– Multibyte locales to support non-Latin character sets

• 2.0, December 2004

– POSIX threads and multiprocessor support on i386
– AMD64 support
– Unix Filesystem v2 and Samba filesystem support

• 3.0, December 2005

– Xen hypervisor support
– Filesystems over 2TB
– Pluggable Authentication Module support
– PF, packet filter as an alternative to IPFilter

• 4.0, December 2007

– Bluetooth stack
– Verified executables, preventing unknown binaries from running in secure environments

• 5.0, April 2009

– Improvements in Loadable Kernel Modules and threading

Chris Pinnock 8

NetBSD/i386 from 1.0 to present 23rd September 2022

– Replacement of Xfree86 with the X.Org X windows system
– Import of the Clang compiler with the aim of replacing GCC

• 6.0, October 2012

– Logical Volume Manager, abstracting physical discs into logical volumes for better manage-
ment

– Better flash device support
– MPLS support in the network stack
– NetBSD’s Packet Filter introduced
– The 2038 UNIX time epoch fixed by changing time_t to 64-bit

• 7.0, October 2015

– In kernel implementation of the Lua scripting language
– Dynamic internet protection with the blacklisting daemon
– Multiprocessor ARM support
– Raspberry Pi 2 support and other ARM boards

• 8.0, July 2018

– USB 3 support
– Hardened memory layout by making only essential pages writable
– Reproducible builds, where build.sh outputs identical binaries on different machines
– UEFI boot support
– NVMe support for newer flash drives
– NVidia GPU support
– Raspberry Pi 3 support

• 9.0, February 2020

– 64-bit ARM architecture support
– Hardware acceleration for emulators (e.g. Qemu) using NetBSD’s Virtual Machine Monitor.
– Improvements to the firewall, ZFS and drivers

We will now install v1.0 on a virtual i386 environment, then step through the releases of NetBSD using
only the source code and the compiler. After v1.6, the process becomes simpler because the build.sh
system has been introduced.

Chris Pinnock 9

NetBSD/i386 from 1.0 to present 23rd September 2022

5 Setting up and getting ready

5.1 Conventions

Throughout, where you see % it is usually a command prompt on the system running the emulator and
is usually a root prompt on the emulated NetBSD system. Historically, NetBSD used the csh shell for
root and we have assumed the same here.

You can use sh or ksh if you like, but you will need to make adjustments. For example, where you see
the use of setenv, for example:

% setenv VARIABLE thing

you will need to substitute:

$ VARIABLE=thing
$ export VARIABLE

We do not cover the source code structure here, but the interested reader can refer to the History
section of [12].

5.2 VirtualBox

We will use Oracle’s VirtualBox2 because it supports the i386 architecture and has working floppy drive
support, specifically for 1.2M floppies. NetBSD 1.0 was released in November 1994 when hard discs
were small and 5.25” floppy discs were still prevalent.

I would normally use QEMU3 for a project like this but I could not get the floppy disc support to work.
We will start with VirtualBox and swap to QEMU later on. There is no reason that you cannot follow the
process using VirtualBox throughout. Also it should be possible to use Bochs4.

To install VirtualBox, download the relevant package and follow the installation instructions at the
web site. The version used in this document was 6.1.32 r149290.

5.3 Obtaining the media

The NetBSD 1.0 distribution can be found at the NetBSD archive. To install the system on VirtualBox,
you will need:

2VirtualBox: https://www.virtualbox.org
3QEMU https://www.qemu.org
4Bochs https://bochs.sourceforge.io

Chris Pinnock 10

http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.0/
https://www.virtualbox.org
https://www.qemu.org
https://bochs.sourceforge.io

NetBSD/i386 from 1.0 to present 23rd September 2022

• A kernel boot floppy kcaha-10.fs
• The installation filesystem floppy disc image inst10.fs
• The distribution sets loaded onto floppy images.
• Patience.

To make this easy, I have prepared a tarball of everything needed [D1] including the kcaha-10, inst-10
floppies and the complete binary installation media on floppy images numbered from 0 to 17.

Additionally I’ve prepared the source sets for 1.1 [D2] (28 disc images) and 1.2 [D3] (36 disc images) as
floppy images so that they can be loaded on the VM.

5.4 Installing NetBSD 1.0

We follow the original installation procedure [10] to the letter. The only difference is that we are using a
virtual environment and we will use the VirtualBox floppy disc emulation to insert and remove floppy
disc images.

1. Start VirtualBox, click New and create a new 32-bit NetBSD VM called “NetBSD”. Four megabytes of
RAM is sufficient for what we are doing here.

2. Create a VMDK-based hard disc image of 1GB:

Chris Pinnock 11

http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.0/i386/floppies/kcaha-10.fs
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.0/i386/floppies/inst-10.fs
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.0/i386/binary/

NetBSD/i386 from 1.0 to present 23rd September 2022

Do not try to use a larger drive here because NetBSD 1.0 will not cope and you are likely to end up with
a corrupt filesystem if the 2GB barrier is breached. Remember that this is an operating system from the
90s and a 1GB drive was huge for its time.

3. Rename the disc files so that VirtualBox will recognise them (it needs a file with .img at the end):

% mv inst-10.fs inst-10.img
% mv kcaha-10.fs kcaha-10.img

4. Add a floppy drive to the machine. Go to Settings, then Storage and add a floppy drive using the
left-most addition button at the bottom of the controller list.

Chris Pinnock 12

NetBSD/i386 from 1.0 to present 23rd September 2022

5. Select the Kernel floppy in VirtualBox. Use the disc add button next to the floppy controller:

Chris Pinnock 13

NetBSD/i386 from 1.0 to present 23rd September 2022

Then choose the kernel floppy disc image:

Chris Pinnock 14

NetBSD/i386 from 1.0 to present 23rd September 2022

6. After saving the settings, we need to change the density of the floppy drive. This cannot be done in
the GUI. In a terminal window, set the density of the Floppy Drive to 1.2MB, otherwise the system will
not boot from the drive correctly.5

% VBoxManage setextradata "NetBSD"
VBoxInternal/Devices/i82078/0/LUN#0/Config/Type "Floppy 1.20"

7. Start the VM with the Start button. The kernel floppy will boot.

5The command is one line. I have excluded the usual backslash to assist with cut and paste.

Chris Pinnock 15

NetBSD/i386 from 1.0 to present 23rd September 2022

8. Now swap the floppy to the installation disc and then press enter on the window. Click the floppy
disc icon in the bottom right of the emulator screen:

And choose the installation floppy image:

Chris Pinnock 16

NetBSD/i386 from 1.0 to present 23rd September 2022

9. The system will boot. During the boot, make sure you write down the disc geometry from the kernel
messages. For example, 2080 cylinders 16 heads, 63 sectors.

Chris Pinnock 17

NetBSD/i386 from 1.0 to present 23rd September 2022

Once the system has booted, press enter at the prompt:

10. Now follow the installation instructions. We summarise them here, but please read them at [10].

• Proceed with the installation and choose IDE.
• wd0 is the correct drive
• We call the disc amnesiac
• Put the disc geometry numbers into the next questions

Chris Pinnock 18

NetBSD/i386 from 1.0 to present 23rd September 2022

• Use cylinders for the disc metric
• Use the full disc (e.g. 2080 cylinders) for NetBSD

• For the root partition, use 208 cylinders
• For the swap partition use the same
• Use the rest (e.g. 1664 cylinders) for /usr

11. Now shutdown the machine and remove the virtual floppy disc. Replace it with the Kernel boot
floppy and reboot.6

11. This time, do not replace the disc when asked to “Insert file system floppy” - just press Enter.

12. When booted, press Enter and run copy_kernel to put a kernel file onto the hard disc.

6Sometimes VirtualBox crashes when rebooting. If this happens, simply power it on again.

Chris Pinnock 19

NetBSD/i386 from 1.0 to present 23rd September 2022

13. Shutdown the system again, remove the floppy and reboot the VM. It should boot from the hard
drive image.

14. You now have a virtual machine with a very basic NetBSD installation on it. The next steps are to
get the rest of the installation media. We will do this via floppy images.

15. Firstly some precautions. We will preserve a copy of /bin/cat. This is a special “crunched” binary
that incorporates several programs into one. Crunched binaries help preserve space on the installation
media. In /bin you will see 18 files which are hard-linked together. Similarly in /usr/bin there are
symbolic links to cat. See the crunchgen(1) manual page for more details.

Some care is needed as the installation process overwrites these links and if something goes wrong
during the process, it will be difficult to recover.

cp /bin/cat /crunched

(Another thing you can do now is power down your VM and make a backup of the VMDK file.)

The installation utilities are in a file called /.commonutils. We will use the shell functions in there to
install the system 7.

16. Use Set_tmp_dir to setup where you will load the contents of the floppies onto the hard drive
(e.g. /usr/distrib). Use Load_fd and choose drive 0. Now, using the floppy icon, insert each installation

7Note that the installation routines are using /bin/sh and not /bin/csh.

Chris Pinnock 20

NetBSD/i386 from 1.0 to present 23rd September 2022

media floppy disc and then hit enter. The contents will be loaded into /usr/distrib.8 Repeat for discs 0
through to 17. After copying the last one, don’t forget to virtually eject it from the VM.

18. Now install the binaries using the Extract shell function

cd /usr/distrib
Extract base10
Extract comp10
Extract etc10
Extract man10
Extract text10
Extract secr10
Extract games10
Extract misc10
Extract text10

19. If successful, the files in /usr/distrib can be safely removed.

20. Tailor the system to your needs by adjusting the files in /etc and reboot the system. I changed the
hostname to amnesiac by editing /etc/myname.

21. Log in as root and have a look around. Navigating around the machine, we see that we are back in
1994. Root’s shell is csh by default.

NetBSD/i386 (amnesiac) (ttyv0)

8If you are getting frustrated at this point, imagine having to do this with real floppy discs.

Chris Pinnock 21

NetBSD/i386 from 1.0 to present 23rd September 2022

login: root
Last login: Sun Mar 13 16:08:47 on ttyv0
Mar 13 16:12:48 amnesiac login: ROOT LOGIN (root) ON ttyv0
Mar 13 16:12:48 amnesiac login: ROOT LOGIN (root) ON ttyv0
Copyright (c) 1980,1983,1986,1988,1990,1991 The Regents of the University
of California. All rights reserved.

NetBSD 1.0 (GENERICAHA) #3: Sun Oct 23 20:58:04 PDT 1994

Welcome to NetBSD!

Terminal type? [pc3]
Don't login as root, use su
amnesiac# cc -v
gcc version 2.4.5

22. Now you can install the source sets for 1.1 which will be needed for the next step. To do this, change
to /bin/sh and source the installation routines stored in /.commonutils. Obtain the source floppy images
and then load the discs as before. The sources will appear in /usr/src:

/bin/sh
. /.commonutils
Load_fd
Extract src11
Extract ksrc11
Extract gsrc11
Extract dsrc11
Extract ssrc11

23. If you will switch to QEMU later and want to follow the full upgrade process, it might be easier to
copy the 1.2 source floppies to the image now.

I have provided a VM in VMDK format with the sources for 1.1 extracted in /usr/src and the sources for
1.2 ready in /usr/distrib [D4]. Similarly this is available in QEMU format [D5].

5.5 Converting to QEMU

QEMU is a freely available emulator supporting many architectures including i386. You can obtain it
from https://www.qemu.org, or directly from the packaging system on your machine. For example:

NetBSD from source
cd /usr/pkgsrc/emulators/qemu && make install
or using pkgin
pkgin install qemu

OpenBSD
pkg_add qemu

Chris Pinnock 22

https://www.qemu.org

NetBSD/i386 from 1.0 to present 23rd September 2022

FreeBSD
pkg install qemu

Debian/Ubuntu Linux
apt install qemu

macOS (with Homebrew, https://brew.sh)
brew install qemu

The image we have created can be easily converted to a QEMU machine format such as qcow2. First,
locate the VMDK file in the VirtualBox directory and copy it to a new directory for use with QEMU. Then
use qemu-img to convert it to qcow2, as follows:

% mkdir ~/Scratch
% cd ~/Scratch
% cp ~/VirtualBox\ VMs/NetBSD/NetBSD.vmdk .
% qemu-img convert -O qcow2 NetBSD.vmdk netbsd-i386-1.0.img

This VM can now be booted from QEMU, like so:

% qemu-system-i386 -hda netbsd-i386-1.0.img -boot c

The version of QEMU on your system may support an emulated console in the terminal. You can start
the system using -display curses. It is easier to cut and paste from such a terminal.

Chris Pinnock 23

NetBSD/i386 from 1.0 to present 23rd September 2022

We have provided a VM of NetBSD 1.0 with the sources extracted for convenience [D5].

5.6 Approach to upgrading by source

The NetBSD source code is designed to be built with make and top-level Makefile has several targets
that will help us. The build target attempts to build everything in the source tree and install it. But
unfortunately it will not always work as-is between releases without some tinkering. The reason
for this is that between major versions there are interdependencies between the different software
components where certain tools need to be upgraded before others.

As a general approach, we will:

• Build the new kernel first and reboot, building any tools we need to achieve this (usually config
but sometimes others)

• Keep a copy of each kernel we build
• Then build the userland, the regular software of the system
• Sometimes it will be necessary to rebuild the compiler, assembler and other tools first
• But we will try to use make build as much as we can
• If we come across an awkward binary, we will leave it out until we can build it

Chris Pinnock 24

NetBSD/i386 from 1.0 to present 23rd September 2022

• We will not update /etc unless we absolutely need to
• We will preserve VMs between releases

Throughout the process I have preserved each kernel in the root filesystem. For example when upgrad-
ing from 1.0 to 1.1, I will do the following:

cp /netbsd /netbsd.10 # make sure I have a copy of 1.0
cp netbsd /netbsd.11 # archive copy
cp netbsd / # new installed copy

When you have finished upgrading between releases, shutdown the virtual machine, exit QEMU and
make a copy of the virtual machine image. For practical purposes, it is good to be able to go back to a
known-good checkpoint. I recommend preserving a VM image after upgrading to a new release and
also after rebooting with a new kernel. For example, after finishing the upgrade to 1.1, stop QEMU,
store a copy of the VM and then make a fresh copy for the upgrade to 1.2.

% mkdir ~/VMstash
% cp amnesiac-netbsd-i386-1.1.img ~/VMstash
% cp amnesiac-netbsd-i386-1.1.img amnesiac-netbsd-i386-1.2.img

Throughout the process, I have preserved a copy of each release VM and they can be found here [D8].

6 Upgrading NetBSD 1.0 to 1.1

1. Start the VM in QEMU and login as root. In the default installation, we will get a warning that the
shell is running as root with the current working directory in the PATH. To fix this edit both .cshrc and
.profile in / and /root. Then logout and login again.

2. The first step is to build the tools necessary to upgrade the kernel. The kernel is the operating system
binary that is loaded at boot time. First we rebuild config. This program takes a kernel configuration
file and makes a build directory for it.

(In this paper, when we change directory a source directory it is assuming that the path is relative
to /usr/src. The root csh profile includes a hook to find the right directory wherever you are on the
filesystem.)

cd usr.sbin/config
make && make install

3. Upgrade make and mkdep. Make is used to build programs and mkdep is used to make dependency
files.

cd usr.bin/make
make && make install

Chris Pinnock 25

NetBSD/i386 from 1.0 to present 23rd September 2022

cd ../mkdep
make && make install

4. Upgrade yacc. Yacc (Yet Another Compiler Compiler) produces C code from compiler grammar files.
It is used to build compilers.

cd yacc
make depend && make && make install

5. Upgrade the assembler gas. The assembler turns compiler output into machine language objects.

cd gnu/usr.bin/gas
make depend && make && make install

6. Configure and build the kernel specified in GENERICOTHER.

cd sys/arch/i386/conf
config GENERICOTHER
cd ../compile/GENERICOTHER
make depend && make
cp /netbsd /netbsd.10
cp netbsd /netbsd.11
cp netbsd /

7. Reboot and login again.

8. Now we update the supporting files on the system. The first command updates the Make libraries
used by the system source code. The second installs the latest C header files and the third makes sure
that all directories we need are installed.

cd /usr/src/share/mk && make install
cd include && make install
cd etc && make DESTDIR=/ distrib-dirs

9. Bootstrap lex. Lex is a lexical analyser used when building the compiler and other tools. There is a
version of lex on the system but it is not sufficient to build the new version. There is a contingency for
“first time builds” which we use here:

cd lex
cp initscan.c scan.c
make && make install && make clean

5. The libcurses library needs to be updated for libterm to build correctly (strictly for a compatible
includes file). We do this here so that libterm builds later on. Both of these libraries are used for terminal
interaction.

cd lib/libcurses && make depend && make && make install

Chris Pinnock 26

NetBSD/i386 from 1.0 to present 23rd September 2022

6. Bootstrap lint. This program is used for checking C program files for mistakes and formatting errors.
Lint needs to be bootstrapped because it expects a working lint to be installed already and it was not
included in 1.0.

cd usr.bin/xlint
cd lint1 && make && make install
cd ../lint2 && make && make install
cd ../xlint && make && make install
cd .. && make && make install

7. Update rpcgen used in the build later for building the Remote Procedure Call programs.

cd usr.bin/rpcgen && make && make install

8. Next we compile the compiler runtime support library and the C library. Then we rebuild the other
programs.

The runtime support library contains supporting code to initialise and exit programs. It is included by
the compiler in most programs on the system.

There were three minor version bumps to the C library between 1.0 and 1.1, so it’s important we update
it first.

cd /usr/src/lib/csu
make depend && make && make install
cd /usr/src/lib/libc
make depend && make && make install

9. We rebuilt the assembler earlier. Now we update the linker and the compiler and install them,
meaning we have updated the key components of the compiler build-chain9.

cd gnu/usr.bin/ld && make && make install
cd gnu/usr.bin/gcc2 && make && make install

10. Now we rebuild everything else and install it. We will essentially do what the build target does in
Makefile but we will do it by hand to observe what it is doing. First we build and install the new libraries,
then we build and install the rest of userland.

cd /usr/src/lib
make depend && make && make install
cd gnu/lib
make depend && make && make install
cd ../../domestic/libcrypt
make depend && make && make install
cd /usr/src
make depend && make && install
9During my experiments, I found it necessary to upgrade the linker directly after the C library. Upgrading all the libraries

together results in a broken system.

Chris Pinnock 27

NetBSD/i386 from 1.0 to present 23rd September 2022

Once this is completed, you can reboot your system to ensure it is running all the up to date software.
It’s a good idea to halt the VM and make a copy of it before proceeding.

The VM can be booted with a functioning network interface10 as follows (changing the filename as
appropriate):

% qemu-system-i386 -hda amnesiac-netbsd-i386-1.1.img -net user -net nic,
model=pcnet -boot c

The network interface can be configured as follows:

ifconfig le0 10.0.2.5 netmask 255.255.255.0
route add default 10.0.2.2

As an exercise, observe the script /etc/netstart and see what you need to do to make the IP configuration
permanent. This usually involves editing the files /etc/hostname.le0 and /etc/mygate.

7 Upgrading NetBSD 1.1 to 1.2

We follow a similar process to the previous section.

1. Remove the 1.1 sources and extract 1.2 sources using the shell installation routines.

/bin/sh
mv /usr/src /usr/src.1
cd /usr/distrib
. /.commonutils

My images include the 1.2 sources, but if you have not used these you will need to load them from
floppy disc images with Load_fd.

Extract src12
Extract ksrc12
Extract ssrc12
Extract gsrc12
Extract dsrc12
rm -rf /usr/src.1

2. Update config and build a GENERICOTHER kernel. Reboot the system.

3. Rebuild make, yacc, lex, lint (in usr.bin/xlint), nm and tsort.

5. Install the directories, make files and includes

cd etc && make DESTDIR=/ distrib-dirs
cd ../share/mk && make install

10There are only a few things missing, the most notable being a tool to build a CD image bootable on Macs for NetBSD/macppc.

Chris Pinnock 28

NetBSD/i386 from 1.0 to present 23rd September 2022

cd /usr/src && make includes

6. Rebuild the archiver ar, assembler gas and linker ld

cd usr.bin/ar && make && make install
cd gnu/usr.bin/gas && make && make install
cd gnu/usr.bin/ld && make && make install

7. Rebuild the compiler gcc. This requires a bootstrap step. See the instructions at [13]. To quote:

If you are still running 2.4.5 as your cc1, you will not be able to compile libgcc. To do that, do a
make up until it fails with libgcc. It will have made gcc, cc1, cc1plus, cc1obj and cpp. Install at
least gcc (cc), cc1, and cpp. Then you can go into libgcc and make libgcc.a. Make sure you then
install the new libgcc.a.

cd gnu/usr.bin/gcc
make
...fails...
cd cc && make install
cd ../cc1 && make install
cd ../cpp && make install
cd ../libgcc && make && make install
cd ..
make clean && make && make install

8. Before building everything we put a small workaround in place for bin/ln. Edit its Makefile and
remove symlink.7 from MAN=. There appears to be a small bug somewhere preventing installation.
The consequence is missing one manual page for now.

9. Now to rebuild everything else and install it. We will essentially do what the build target does without
the cleaning step but we will do it by hand:

cd /usr/src
cd lib
make depend && make && make install
cd ../gnu/lib
make depend && make && make install
cd ../../domestic/lib
make depend && make && make install
cd /usr/src
make depend && make && install

10. Reboot the VM as normal. You can also clean /usr/distrib of source floppy files.

Chris Pinnock 29

NetBSD/i386 from 1.0 to present 23rd September 2022

8 Upgrading NetBSD 1.2 to 1.2.1

This is not a difficult upgrade. First obtain the sources [D6] and put them on a nearby FTP server
that your VM can reach. Then transfer them to the VM and extract them. We’ve included the network
configuration here.

ifconfig le0 10.0.2.5 netmask 255.255.255.0
route add default 10.0.2.2
cd /usr
rm -rf src
cd distrib
ftp 192.168.178.10

....
ftp> pass
ftp> prompt
ftp> mget netbsd-1-2-1-source-code.tar.gz
mv *121/* .
rmdir src121 ksrc121 ssrc121 gsrc121 dsrc121
/bin/sh
. /.commonutils
Set_tmp_dir
Extract src121
Extract ksrc121
Extract ssrc121
Extract gsrc121
Extract dsrc121

Then configure and rebuild a kernel in the usual way

cd sys/arch/i386/conf
config GENERIC
cd ../compile/GENERIC
make depend && make
cp /netbsd /netbsd.12
cp netbsd /netbsd.121
cp netbsd /

Reboot the system then rebuild userland. The make build target will work here without issues as the
changes between 1.2 and 1.2.1 are not substantial.

cd /usr/src
make build

Chris Pinnock 30

NetBSD/i386 from 1.0 to present 23rd September 2022

9 Upgrading NetBSD 1.2.1 to 1.3.3

The 1.3 sources use two new defines __COPYRIGHT and __RCSID throughout which our system’s
definitions in /usr/include are not ready for yet.

One easy way to avoid these is to define lint when compiling the first few tools. A less elegant way is
to temporarily remove the defines from the sources before we have installed the new includes files.

1. Cleanup the source tree. Obtain the NetBSD 1.3.3 source sets src.tgz, syssrc.tgz, sharesrc.tgz and
gnusrc.tgz [S13] via a local FTP server and then untar them with tar zxf.

NetBSD 1.3 introduced the pkgsrc and xsrc source modules for the Packages Collection and the X11
Windowing system. Neither of these are required for what we are doing.

2. Rebuild config

cd usr.sbin/config
make CFLAGS=-Dlint && make install

3. Rebuild and install lint

cd usr.bin/xlint && make && make install

4. Build a GENERIC kernel and reboot

cd /usr/src/sys/arch/i386/conf
config GENERIC
cd ../compile/GENERIC
make depend && make
cp /netbsd /netbsd.121
cp netbsd /netbsd.133
cp netbsd /
shutdown -r now

5. Rebuild install, make, yacc and rpcgen. The new versions are needed in advance of the build.

cd /usr/src/usr.bin/xinstall
make CFLAGS=-Dlint && make install
cd ../make
make CFLAGS=-Dlint && make install
cd ../yacc
make CFLAGS=-Dlint && make install
cd ../rpcgen
make CFLAGS=-Dlint && make install

6. Install the make libraries (this needs the new install version). Once this is done, we do not need the
lint compiler flag.

cd share/mk && make install

Chris Pinnock 31

NetBSD/i386 from 1.0 to present 23rd September 2022

7. Make and install the rest of the binaries:

cd /usr/src
make build

8. Reboot. When booting you will see this message. We need to install new boot blocks to bring them
up to date. The explanation is in the installboot(8) manual page.

WARNING: Disk appears to be old-NetBSD or FreeBSD. See installboot(8).

cd /usr/mdec
./installboot biosboot.sym /dev/rwd0a

8. If you started with an earlier NetBSD before 1.0, you might need to use fdisk to change the partition
ID from 165 to 169 but this is not necessary in our case.

fdisk
******* Working on device /dev/rwd0d *******
Warning: BIOS sector numbering starts with sector 1
parameters extracted from in-core disklabel are:
cylinders=2080 heads=16 sectors/track=63 (1008 sectors/cylinder)

Figures below won't work with BIOS for partitions not in cylinder 1
parameters to be used for BIOS calculations are:
cylinders=2080 heads=16 sectors/track=63 (1008 sectors/cylinder)

Information from DOS bootblock is:
0: <UNUSED>
1: <UNUSED>
2: <UNUSED>
3: sysid 169 (NetBSD)

start 0, size 16 (0 MB), flag 0x80
beg: cylinder 0, head 0, sector 1
end: cylinder 0, head 0, sector 16

10 Upgrading NetBSD 1.3.3 to 1.4.3

1. Get the 1.4.3 source sets [S14] and follow the same process as for the upgrade to 1.3.3 to get them onto
the machine. Note that on 1.3.3, passive mode is default on ftp - issuing pass to ftp is not necessary.

2. Rebuild and install config.

3. The GENERIC kernel will not build without some effort so we will workaround it and come back to it
later on.

• Copy the GENERIC configuration file to GENERIC1

Chris Pinnock 32

NetBSD/i386 from 1.0 to present 23rd September 2022

• Remove any NFS options (lines 95, 110, 141)
• Remove any references to pciide (lines 373, 400 and 404)
• Remove the wscons section (lines 236-250) and enable pc0 (line 227)
• Build the kernel and install it. Reboot.

Our VM doesn’t have a PCI IDE interface, so we are vaguely justified in doing this. Also we can live
without the Network File System. We continue to use the pc0 driver because our userland is not ready
for the Workstation Independent console drivers wscons that were introduced in 1.4.

4. Rebuild make, yacc and install the share/mk files. Then rebuild lex.

cd usr.bin/make && make && make install
cd ../yacc && make && make install
cd /usr/src/share/mk && make install
cd ../../usr.bin/lex && make && make install

5. Install the new C header files:

cd /usr/src
make includes

6. Build the libraries. The C library build requires us to relax the compiler warnings, otherwise the build
will not complete. Set NOGCCERROR to avoid them.

setenv NOGCCERROR
cd lib && make && make install

7. Make sure all the correct directories exist.

cd etc && make DESTDIR=/ distrib-dirs

8. The build now includes GNU info pages, so we need texinfo in advance of it to build them. To
bootstrap we avoid making info pages for texinfo by setting MKINFO to no

cd gnu/usr.bin/texinfo
make MKINFO=no && make MKINFO=no install

9. Build a new linker, assembler, compiler and tools;

cd /usr/src/gnu/lib/libbfd && make && make install
cd /usr/src/gnu/usr.bin/ld && make
cd ../gas.new && make
cd ../binutils && make
cd ../egcs && make

cd ../ld && make install
cd ../gas.new && make install
cd ../binutils && make install

Chris Pinnock 33

NetBSD/i386 from 1.0 to present 23rd September 2022

cd ../egcs && make install

10. Rebuild the system fully and reboot.

unsetenv NOGCCERROR
cd /usr/src
make build
shutdown -r now

11. We have a working 1.4 system with a slightly modified GENERIC kernel and the old pc0 driver. Now
we should be able to build GENERIC properly and use the new drivers

cd sys/arch/i386/conf
config GENERIC
cd ../compile/GENERIC
make depend && make
cp /netbsd /onetbsd
cp netbsd /netbsd.143
cp netbsd /

12. Before rebooting fix ttys and devices for the wscons driver.

cd etc/etc.i386
cp ttys /etc
cp MAKEDEV /dev
cd /dev && ./MAKEDEV all

13. Reboot

11 Upgrading NetBSD 1.4.3 to 1.5.3

NetBSD 1.5 introduced the ELF binary format for the i386 platform and the upgrade is a little trickier as
a result. I have written a separate paper [12] on this topic in which I start with a 1.4.3 system installation
and upgrade to 1.5. Please refer to that paper for the detail.

We have avoided updating /etc up to now and have got away with it so far. Because we started with an
earlier NetBSD and not a clean 1.4.3 installation, we need to make one adjustment before upgrading to
1.5.3. The build needs some additional groups. Update /etc/group from /usr/src/etc/group (e.g. by just
copying it if you have not made local modifications) before make build.

After upgrading to 1.5.3, /etc needs be tidied up particularly due to the introduction of the rc.d system.
For now, one can do the following:

• copy /usr/src/etc/defaults/.conf* to /etc/defaults

• From /usr/src/etc, copy rc, rc.lkm, rc.local, rc.shutdown, rc.subr and rc.conf to /etc.

Chris Pinnock 34

NetBSD/i386 from 1.0 to present 23rd September 2022

• Install /usr/src/etc/rc.d in /etc (use make install)

• edit rc.conf and set rc_configured to YES

• check /etc/defaults/rc.conf and set variables in /etc/rc.conf to suit your installation. For example:

dhclient=YES
dhclient_flags="le0"

• /etc/mygate is no longer needed
• /etc/fstab now needs an entry for swap

/dev/wd0b none swap sw 0 0

In later releases, the postinstall script will help us tidy up /etc.

12 Interlude - Amnesiac needs new (virtual) hardware

By the end of the upgrade to 1.5.3, we are approaching the limits of the system we setup for 1.0. For
example, the hard disc is unlikely to be large enough for future upgrades. Here we see the filesystem
sizes after the 1.5.3 build, then without the objects and then without the source code:

df -k
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wd0a 101487 49414 46998 51% /
/dev/wd0e 812014 672890 98523 87% /usr
cd /usr/src && make cleandir
df -k
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wd0a 101487 49414 46998 51% /
/dev/wd0e 812014 456733 314680 59% /usr
rm -rf /usr/src
df -k
Filesystem 1K-blocks Used Avail Capacity Mounted on
/dev/wd0a 101487 49414 46998 51% /
/dev/wd0e 812014 124943 646470 16% /usr

Shutdown the VM before making any changes. We will assume the image name is amnesiac-netbsd-
1.5.3.img.

12.1 New network card

Under Qemu emulation, the ne device works better on NetBSD. We could have switched to this a few
releases ago, but seeing as we are fiddling with hardware, let’s do it now. In our virtual world, all we
need to do is change the model in the QEMU command line options as follows:

Chris Pinnock 35

NetBSD/i386 from 1.0 to present 23rd September 2022

-net nic,model=ne2k_pci

When we boot the VM next, we can change the configuration in /etc/rc.conf to run the DHCP client on
boot:

dhclient_flags="ne2"

12.2 Bigger hard disc

We will add a second hard disc, partition it and copy the data across. First, shutdown your VM, then
make a 20GB image file and boot your VM with it as the second disc.

% qemu-img create -f qcow2 amnesiac-netbsd-i386-1.5.3.newhw.img 20G
% qemu-system-i386 -hda amnesiac-netbsd-i386-1.2.img \

-hdb amnesiac-netbsd-i386-1.5.3.newhw.img -net user \
-net nic,model=ne2k_pci -boot c

On an x86-based machine, the BIOS use disc partitions to separate operating systems and drives. One
of these partitions will contain our BSD installation. Within this BIOS partition, BSD uses a disklabel to
mark out its own partitioning scheme (also called slices) to identify the root partition, swap partition
and others.

1. Partition the new image using fdisk by obtaining the geometry from the kernel boot messages:

dmesg | grep wd1
...
wd1: 20480 MB, 16383 cyl, 16 head, 63 sec, 512 bytes/sect x 41943040

sectors
...
fdisk -u wd1
...
Do you want to change our idea of what BIOS thinks? [n] n
The data for partition 0 is:
<UNUSED>
Do you want to change it? [n] y
sysid: [0] 169
start: [0]
size: [0] 41943040
Explicitly specify beg/end address? [n]
sysid 169 (NetBSD)

start 0, size 41943040 (20480 MB), flag 0x0
beg: cylinder 0, head 0, sector 1
end: cylinder 1022, head 254, sector 63

Is this entry okay? [n] y
...
Should we write new partition table? [n] y

Chris Pinnock 36

NetBSD/i386 from 1.0 to present 23rd September 2022

2. Now we initialise the disklabel and add three BSD partitions for /, swap and /usr using a scheme
matching our existing disc.

disklabel -i -I wd1
partition> P
8 partitions:
size offset fstype [fsize bsize cpg/sgs]
c: 41943040 0 unused 0 0 # (Cyl. 0 - 41610*)
d: 41943040 0 unused 0 0 # (Cyl. 0 - 41610*)
e: 41943040 0 unused 0 0 # (Cyl. 0 - 41610*)
partition> e
Filesystem type [?] [unused]: <RET>
Start offset [0c, 0s, 0M]: 0
Partition size ('$' for all remaining) [41610.2c, 41943040s, 20480M]: 0
partition> a
Filesystem type [?] [unused]: 4.2BSD
Start offset [0c, 0s, 0M]:
Partition size ('$' for all remaining) [0c, 0s, 0M]: 2080c
partition> b
Filesystem type [?] [unused]: swap
Start offset [0c, 0s, 0M]: 2080c
Partition size ('$' for all remaining) [0c, 0s, 0M]: 2080c
partition> e
Filesystem type [?] [unused]: 4.2BSD
Start offset [0c, 0s, 0M]: 4160c
Partition size ('$' for all remaining) [0c, 0s, 0M]: $
partition> W
Label disk [n]? y
Label written
partition> Q

3. Create file systems on the partitions using newfs.

newfs /dev/rwd1a
/dev/rwd1a: 2096640 sectors in 2080 cylinders of 16 tracks, 63 sectors
1023.8MB in 130 cyl groups (16 c/g, 7.88MB/g, 1984 i/g)

super-block backups (for fsck -b #) at:
32, 16224, 32416, 48608, 64800, 80992, 97184,
...

newfs /dev/rwd1e

4. Shutdown and boot single user by interrupting the boot process and typing boot -s

5. Check all filesystems and mount them (press return at the first prompt):

Enter pathname of shell or RETURN for sh:
fsck
** /dev/rwd0a
** File system is clean; not checking
** /dev/rwd0e
** File system is clean; not checking

Chris Pinnock 37

NetBSD/i386 from 1.0 to present 23rd September 2022

mount -a

6. Mount the new partitions

mount /dev/wd1a /mnt
mkdir -p /mnt/usr
mount /dev/wd1e /mnt/usr

7. Copy the data, excluding the mount point /mnt and the device hierarchy /dev. We will carefully use
tar preserving the permissions on the files with the p option.

tar cpf - .c* .instutils .profile netbsd* altroot \
bin boot crunched emul etc home install \
root sbin stand sys tmp usr var | \
(cd /mnt && tar xvpf -)

mkdir /mnt/mnt

8. Install the device nodes on the new drive:

mkdir /mnt/dev
cp /dev/MAKEDEV /mnt/dev
cd /mnt/dev
./MAKEDEV all

7. Install a boot block:

cd /usr/mdec
./installboot biosboot.sym /dev/rwd1a

8. Halt the machine. In the days of physical hardware, we would swap the discs over or enter the BIOS
to boot from the other drive. Here we just boot from the new image on Qemu.

% qemu-system-i386 -hda amnesiac-netbsd-i386-1.5.3.newhw.img \
-net user -net nic,model=ne2k_pci -boot c

13 Upgrading NetBSD 1.5.3 to 1.6.2

1. Obtain the 1.6.2 sources [S16] and decompress into /usr/src.

2. Update config as usual. The kernel uses some new CPU instructions and the assembler needs to be
updated before building it. The assembler needs a newer bfd library.

cd usr.sbin/config && make && make install
cd gnu/lib/libbfd && make
cd gnu/usr.bin/gas.new && make && make install

3. Build the GENERIC kernel and reboot

Chris Pinnock 38

NetBSD/i386 from 1.0 to present 23rd September 2022

4. Add the following groups to /etc/group/

named:*:14:
ntpd:*:15:
sshd:*:16:

Add the following users to the password file using vipw

postfix:*:12:12::0:0:& pseudo-user:/var/spool/postfix:/sbin/nologin
named:*:14:14::0:0:& pseudo-user:/var/chroot/named:/sbin/nologin
ntpd:*:15:15::0:0:& pseudo-user:/var/chroot/ntpd:/sbin/nologin
sshd:*:16:16::0:0:& pseudo-user:/var/chroot/sshd:/sbin/nologin

4. Use the power of build.sh.

The rest of the process of very easy thanks to the power of the build.sh script which was introduced with
the 1.6 release. The script was designed to build the sources in the correct order and also to cross-build
for different machines. It is still possible to use make but you need to figure out the dependencies
between the build tools and the sources as we have been doing up to now. The shell script build.sh
builds a sandboxed toolchain first and then builds the programs. You can simply run the script and go
and get coffee.

mkdir -p /usr/obj
cd /usr/src
./build.sh

5. 1.6.2 shipped with the postinstall script to check for configuration problems. Running with check
will explain what is wrong and running with fix will attempt to fix the problems. Some problems may
need fixing by hand, particularly if local configurations need to be merged.

/usr/src/etc/postinstall check
/usr/src/etc/postinstall fix

14 Upgrading from 1.6.2 to 2.0.3

This is even easier than the upgrade to 1.6 as the build.sh script had matured into a powerful tool
capable of doing everything needed. The script resembles the build.sh script of today. Builds of NetBSD
require little intervention with build.sh and it is possible to use it on other platforms such as Linux,
OpenBSD and FreeBSD. In the latest releases of NetBSD, build.sh is capable of cross-building releases
of all supported architectures.11

1. Retrieve the sources for 2.0.3. The cvs source control tool shipped with 1.6.2 so it is possible to

11There are only a few things missing, the most notable being a tool to build a CD image bootable on Macs for NetBSD/macppc.

Chris Pinnock 39

NetBSD/i386 from 1.0 to present 23rd September 2022

update the sources. You will have to use the pserver method as the ssh binary on 1.6.2 is not
capable of connecting to a modern sshd.

cd /usr/src
cvs -q -d :pserver:anoncvs@anoncvs.netbsd.org:/cvsroot update -r netbsd

-2-0 -dP

It may be as well to run the cvs update again to check it has completed successfully without any conflicts
or merges. Additionally any files marked with ‘?’ can be safely removed as they are remnants of a
previous build.

2. Use build.sh to build a kernel and reboot. See also BUILDING in the top-level source directory.

rm -rf /usr/obj
mkdir -p /usr/obj
cd /usr/src
./build.sh -u tools
./build.sh -u kernel=GENERIC
cp /usr/src/sys/arch/i386/compile/obj/GENERIC/netbsd /netbsd.203
cp /netbsd.203 /netbsd
shutdown -r now

3. Rebuild userland, install and fix the configurations12. Some may need fixing by hand.

rm -rf /usr/obj
mkdir -p /usr/obj
cd /usr/src
./build.sh -u -O /usr/obj distribution
./build.sh -u -O /usr/obj install=/
/usr/src/etc/postinstall check
/usr/src/etc/postinstall fix

15 Later releases

It’s possible to upgrade through every major version using build.sh as above. Here are the branches to
use to get the last release with bug fixes for each major version, e.g. netbsd-2 will actually be called
2.1_STABLE because it may have some patches added to 2.1.

Version Branch

2.1 netbsd-2

12different variants of build.sh usage will work here depending on the version of build.sh. See BUILDING.

Chris Pinnock 40

NetBSD/i386 from 1.0 to present 23rd September 2022

Version Branch

3.1 netbsd-3

4.0.1 netbsd-4

5.2.3 netbsd-5

6.1.5 netbsd-6

7.2 netbsd-7

8.2 netbsd-8

9.3 netbsd-9

Between each release, it is advisable to remove the object files in /usr/obj and older toolchain directories.
Take care to read the UPDATE file as it will usually have information about known problems between
releases. Also read the BUILDING file to check on changes for build.sh. In v3, postinstall is installed in
/usr/sbin and can be run from there.

15.1 Upgrading from 2.1 to 3.1

When updating the src tree, I ran into a problem with the source directory usr.sbin/racoon, possi-
bly caused by a reorganisation of this directory between the releases.13. Deleting the directory and
updating using cvs update -dP will fix any discrepancy.

The v3 releases introduced Pluggable Authentication Modules, changing the way that authentication
is done on the system. You will not be able to login after a reboot if you have not updated /etc properly
with postinstall.

dhclient will not work properly unless the device nodes have been rebuilt.

amnesiac# cd /dev
amnesiac# ./MAKEDEV all

The postinstall script has been installed in /usr/sbin since version 3.

/usr/sbin/postinstall check
/usr/sbin/postinstall fix

13There was a switch from the KAME toolset to the ipsec-tools code.

Chris Pinnock 41

NetBSD/i386 from 1.0 to present 23rd September 2022

15.2 Upgrading from 4 to 5.2

The v5 release had issues with some ACPI implementations and the 5.2 kernel will not boot properly
on the QEMU emulator. In our situation we can turn ACPI off on QEMU. (If we were doing this for “real”
on hardware, our machine would likely not have had ACPI.)

% qemu-system-i386 -hda amnesiac-netbsd-i386-5.img -net user -net nic,
model=ne2k_pci -boot c -no-acpi

15.3 Upgrading from 7.2 to 8.2

The filesystem super-block format changed between 7.2 and 8.2. You will need to tune the filesystems
with fsck so that they can be mounted correctly at boot. If you boot 8.2 without converting, you will get
this error:

Supported file systems: mfs lfs ext2fs ffs nfs umap procfs
overlay null kernfs fdesc union tmpfs smbfs puffs ptyfs
ntfs msdos cd9660 coda
no file system for wd0 (dev 0x0)
cannot mount root, error = 79

To rectify, interrupt the boot process and boot a 7.2 kernel in single user mode. Then use fsck_ffs -c 4 to
update the super-block format for each filesystem you have.

boot /netbsd.72 -s
...
fsck_ffs -c 4 /dev/rwd0a
** /dev/rwd0a
** File system is already clean

CONVERT TO NEW SUPERBLOCK LAYOUT? [yn] y

15.4 Miscellaneous problems

• If for some reason the DHCP client does not work, you can always resort to manual configuration
(assuming a QEMU setup):

ifconfig ne2 10.0.2.5 netmask 255.255.255.0
route add default 10.0.2.2
echo "nameserver 10.0.2.3" > /etc/resolv.conf

• Sometimes dhclient will not start due to a corrupted lease file. Make sure that dhclient is stopped
and then remove /var/db/dhclient.leases.

Chris Pinnock 42

NetBSD/i386 from 1.0 to present 23rd September 2022

• On some terminals the delete key does not always do what you would expect. If your delete or
backspace key results in ˆ? instead of deleting, you can try this:

stty erase ^?

• Don’t forget, because you are working in a virtual machine environment you can make copious
backups of the VM images and return to a known good checkpoint at anytime.

15.5 Building 9.2 directly from earlier releases

During the process of subsequent upgrades, we tried to build NetBSD 9.2 on each earlier version. The
earliest release we were able to build 9.2 on was 6.1. It may be possible on earlier NetBSD releases, but
we will leave this as an exercise to the reader. NetBSD 9.3 was released during the preparation of this
paper, but it is likely that the same holds true.

16 Things I might have done differently

I’m not likely to do anything like this again. It’s something one does for interest and historical nostalgia.
However there are two things that I would have done differently.

16.1 NetBSD 0.8 and 0.9

It would have been great if I could have started with an installation of NetBSD 0.8 and worked from
there. Given the withdrawal of the 0.8 and 0.9 releases due to the lawsuit we mentioned earlier, it is
difficult to find installation media for these two releases.

It would have been interesting to see the upgrade from 0.9 to 1.0 because 1.0 introduced dynamically
linked binaries.

There are archives of NetBSD 0.8 on the Internet if you look hard enough, but it’s not necessarily clear
if they are the official binaries or not. Even if the official binaries were available, they may still be
reluctance to distribute them because of the lawsuit.

A developer has recently recreated an approximate 0.8 installation from 386BSD and the various patch
kits. [11]

Chris Pinnock 43

NetBSD/i386 from 1.0 to present 23rd September 2022

16.2 Root Disc

When I changed the root disc after the 1.5.4 upgrade, I felt as if I had cheated. It would have been
nice for a root disc originally created on 1.0, to have been converted and upgraded throughout the
process.

The problem is that NetBSD 1.0 did not support very large hard discs. If you install 1.0 on a machine
with a disc sized over 2G, it will not be able to cope. This is simply a matter of the sizes of pointers used
in the filesystem code.

If I was doing this again, I would have setup a second hard drive image for /usr, copied the contents to
it and retained the original hard drive image for the root filesystem.

17 Amnesiac, the living VM

The NetBSD/i386 VM installed as 1.0 and upgraded through every major release using only the sources
can be found on the supporting website to this paper [D7]. We will attempt to keep it up to date for as
long as i386 is a supported architecture or the author gets bored.

We will end the paper by checking that binary compatibility was retained throughout the releases.
Remember the binary we saved during the installation of NetBSD 1.0? We made a copy in the root
directory of the binary /crunched which contains all of the installation binaries. And it still runs - here
we run it with its shell personality.

amnesiac# mv /crunched /root
amnesiac# cd /root
amnesiac# file crunched
crunched: a.out NetBSD/i386 demand paged executable
amnesiac# ln -s sh crunched
amnesiac# ./sh
#

18 Acknowledgments

The paper is dedicated to William Jolitz who laid the foundations for a PC version of BSD. I thank Roland
Dowdeswell, Perry Metzger and Arrigo Triulzi for their comments and historical perspective, but also to
the NetBSD, OpenBSD, FreeBSD and other communities who keep the spirit of the CSRG alive.

Chris Pinnock 44

NetBSD/i386 from 1.0 to present 23rd September 2022

19 Bibliography

19.1 References

[1] 386BSD, Wikipedia.

[2] 386BSD website, William and Lynne Jolitz.

[3] BSD Licenses, Wikipedia.

[4] Computer Systems Research Group at UCB, Wikipedia.

[5] The Design and Implementation of the FreeBSD Operating System, McKusick and Neville-Neil, Pearson,
2005.

[6] The FreeBSD Project, FreeBSD Foundation.

[7] NetBSD, Wikipedia.

[8] The NetBSD Project, NetBSD Project.

[9] NetBSD Changelogs, NetBSD Project.

[10] NetBSD 1.0 installation guide, NetBSD Project.

[11] NetBSD 0.8 VM contructed from 386BSD, Gunkies.org.

[12] Transition from a.out to ELF: Memories of upgrading NetBSD 1.4.3 to 1.5, Chris Pinnock, August
2022.

[13] Upgrading to gcc 2.7.2, NetBSD Current Users mailing list, December 1995.

19.2 Media

All the prepared media for this paper can be found at http://downloads.chrispinnock.com/netbsdhist/.
Specifically:

[D1] NetBSD 1.0 Installation Floppy Images

[D2] NetBSD 1.1 source floppies

[D3] NetBSD 1.2 source floppies

[D4] VirtualBox VM of 1.0 installed with the sources for 1.1 and 1.2

[D5] QEMU version of NetBSD 1.0 VM, same as D4 but for QEMU

[D6] Source code for 1.2.1

[D7] VM images of Amnesiac

Chris Pinnock 45

https://en.wikipedia.org/wiki/386BSD
https://www.386bsd.org/
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Computer_Systems_Research_Group
https://www.freebsd.org
https://en.wikipedia.org/wiki/NetBSD
https://www.netbsd.org/
https://www.netbsd.org/changes/
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.0/i386/INSTALL
http://gunkies.org/wiki/NetBSD_0.8
https://chrispinnock.com/2022/08/20/netbsdaout/
https://mail-index.netbsd.org/current-users/1995/12/07/0020.html
http://downloads.chrispinnock.com/netbsdhist/
http://downloads.chrispinnock.com/netbsdhist/2-installation/netbsd-1.0-installation-media.tar.bz2
http://downloads.chrispinnock.com/netbsdhist/2-installation/netbsd-1.1-source-media.tar.bz2
http://downloads.chrispinnock.com/netbsdhist/2-installation/netbsd-1.2-source-media.tar.bz2
http://downloads.chrispinnock.com/netbsdhist/1-virtualbox/netbsd-1.0-i386-virtualbox.tar.gz
http://downloads.chrispinnock.com/netbsdhist/3-VMs/amnesiac-netbsd-i386-1.0.img.bz2
http://downloads.chrispinnock.com/netbsdhist/2-installation/netbsd-1-2-1-source-code.tar.gz
http://downloads.chrispinnock.com/netbsdhist/3-vms

NetBSD/i386 from 1.0 to present 23rd September 2022

[D8] All VM images from 1.0 to 9.2. These are compressed and are set read-only. You will need to change
the permissions with chmod before running.

The source sets for 1.3, 1.4 and 1.6 can still be obtained directly from the NetBSD Archive:

[S13] NetBSD 1.3.3 source sets, NetBSD Project.

[S14] NetBSD 1.4.3 source sets, NetBSD Project.

[S16] NetBSD 1.6.2 source sets, NetBSD Project.

Chris Pinnock 46

http://downloads.chrispinnock.com/netbsdhist/3-VMs/
https://www.netbsd.org/
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.3.3/source/sets/
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.4.3/source/sets/
http://archive.netbsd.org/pub/NetBSD-archive/NetBSD-1.6.2/source/sets/

	Abstract
	Disclaimer
	Introduction
	NetBSD Background
	Setting up and getting ready
	Conventions
	VirtualBox
	Obtaining the media
	Installing NetBSD 1.0
	Converting to QEMU
	Approach to upgrading by source

	Upgrading NetBSD 1.0 to 1.1
	Upgrading NetBSD 1.1 to 1.2
	Upgrading NetBSD 1.2 to 1.2.1
	Upgrading NetBSD 1.2.1 to 1.3.3
	Upgrading NetBSD 1.3.3 to 1.4.3
	Upgrading NetBSD 1.4.3 to 1.5.3
	Interlude - Amnesiac needs new (virtual) hardware
	New network card
	Bigger hard disc

	Upgrading NetBSD 1.5.3 to 1.6.2
	Upgrading from 1.6.2 to 2.0.3
	Later releases
	Upgrading from 2.1 to 3.1
	Upgrading from 4 to 5.2
	Upgrading from 7.2 to 8.2
	Miscellaneous problems
	Building 9.2 directly from earlier releases

	Things I might have done differently
	NetBSD 0.8 and 0.9
	Root Disc

	Amnesiac, the living VM
	Acknowledgments
	Bibliography
	References
	Media

