
Forking NetBSD

Converting a NetBSD 1.1 system to OpenBSD 2.0

Chris Pinnock

6th October 2022

Forking NetBSD 6th October 2022

Abstract

Recently we installed a virtual NetBSD/i386 1.0 system and upgraded it step by step to version 9.3 using
only the source code and the compiler [6]. In [7] we examined the change of binary format from a.out
to ELF between NetBSD/i386 1.4.3 and 1.5.4. Between releases 1.0 and 1.1, the OpenBSD project was
formed, forking from NetBSD. In this paper we convert a NetBSD 1.1 system to OpenBSD 2.0 using just
the source code and the compiler. We will touch on the history of the projects but the politics of the
fork are well-documented elsewhere.

Disclaimer

Do not attempt to use the images or binaries in any production setting. The software will have security
vulnerabilities. Also in this paper, we will use a password-less root account and this is not recommended
in production.

Chris Pinnock 1

Forking NetBSD 6th October 2022

Introduction

Figure 1: An OpenBSD 2.0 system converted from NetBSD 1.1

Open-source licenses give people the freedom to take source code, create new software and go in
new directions. Such licenses allow code to be reused and improved upon, not necessarily by the
originators of the original program. Some licenses such as the GNU General Public License (GPL)
prevent closing the source code later on. The GPL stipulates that source code must be available if the
binaries are distributed [1]. The BSD-style licenses allow a broader reuse including closing the source
in a commercial situation [8].

Given the flexibility of the software model, it’s no surprise that “forks” occur in the open-source world.
There are often differences of opinion in how a project should progress and so the project splits into
two groups, with the source trees diverging over time. There have been many software forks over the

Chris Pinnock 2

Forking NetBSD 6th October 2022

years including1:

1. NetBSD from 386BSD (1993)

Within the 386BSD development community, there was concern about the speed of the development
of the project. An unofficial community patch kit was developed collaboratively, but these patches
did not make it back into the 386BSD source tree. The NetBSD project was formed to support a more
open development model. It was based on 386BSD, the patch kit and some missing programs from the
BSD Net/2 release [15]. Although the initial release was for the PC platform, it quickly supported other
architectures.

2. FreeBSD from 386BSD (1993)

Another group of BSD developers waited a little longer than the NetBSD team to see if the 386BSD
project would be more collaborative before setting their own project. The FreeBSD project originally
targeted just the PC platform [10].

3. egcs from gcc (1997)

With the rationale of stability, the GNU Compiler Collection was developed under close control of the
Free Software Foundation. There was difficulty getting patches and improvements accepted by the
core development team. Several developers setup the Experimental GNU Compiler System (EGCS)2

to collect various forks into one. The system supported many new architectures, a Fortran frontend,
Pentium optimisations and other improvements. Eventually the projects merged again during the GCC
2.95 release [11].

4. DragonflyBSD from FreeBSD (2003)

DragonflyBSD was forked from FreeBSD 4.8 by Matthew Dillon [9]. The team developed an alternative
symmetric multiprocessing and threading model to FreeBSD because they believed the model adopted
in FreeBSD 5 would have performance problems.

5. XOrg from XFree86 (2004)

Initially the project forked due to a disagreement with the new XFree86 software license used for
version 4.4 which includes a credit clause. Prior to 4.4, the project used the MIT license [17].

6. MariaDB from MySQL (2009)

Although MySQL was released under the GPL, it was also released under proprietary licenses and was
owned by MySQL AB. This company was acquired by Sun, who were themselves acquired by Oracle.
Due to a concern about the direction of future releases, the founder of MySQL forked the project and
setup the MariaDB project [13], [14].

1For a more comprehensive list, please see Wikipedia [12].
2Also Enhanced GNU Compiler System.

Chris Pinnock 3

Forking NetBSD 6th October 2022

7. OpenBSD from NetBSD (1995)

We are interested in OpenBSD in this paper. In 1995 there was a disagreement amongst the core group
of NetBSD which lead to Theo de Raadt’s departure from the project. We do not go into the detail
here as it is well-documented on the web. It was not the first disagreement by members of the human
race and it certainly won’t be the last. Opinions differ, tensions rise, tempers fray and arguments
ensue. After a period of time, Theo formed the OpenBSD project. The project would focus on computer
security, but would continue with the goals of clean code and portability [16].

The initial release of OpenBSD was 1.2 and was based on NetBSD between 1.0 and 1.1. Shortly af-
terwards, OpenBSD 2.0 was released. The project has taken its own path and has not been binary
compatible for some time. For several years after its release, it could boast of no remote security holes
and to date only two such problems have been found.

Every 6 months there is a release and to date there have been 52 releases. As I write this paper, version
7.2 is being prepared for an Autumn release in 2022 [4].

The desire to produce portable secure code and also unencumbered BSD-licensed code has led to
several bi-products including:

• OpenSSH, a BSD-licensed version of the Secure Shell program replacing the encumbered SSH.
The implementation was a fork of OSSH which itself was a fork of the SSH project.

• OpenBGP, a BGP daemon enabling a Unix system to become a BGP router.
• OpenSMTPD, a modern mail transport agent.
• LibreSSL, a fork of OpenSSL used in the OpenBSD tree.
• Game of Trees, a recent addition which will provide a drop in replacement for git.

Having recently played with upgrading early NetBSD versions using just the compiler and source code
(see [6] and [7]), I was curious to see if it was easy to “convert” an early NetBSD system to OpenBSD.
Obviously the OpenBSD team would have done this incrementally but I was interested to see what was
involved.

On examining the OpenBSD CVS tree [5], it seems the basis is NetBSD 1.1_ALPHA (a test release of
NetBSD). Some early modifications were made for the OpenBSD 1.2 release but there is no tag in the
CVS tree for it. The earliest tag I could find was for OpenBSD 2.0. As a result I chose to convert a NetBSD
1.1 system to OpenBSD 2.0. Actually it was not too difficult to do so. You can follow along with the
method using QEMU.

Preparation

We use the QEMU emulator to provide an i386 environment and we have prepared resources that will
work with QEMU straight away. However there is no reason that you cannot use VirtualBox or BOCHS -

Chris Pinnock 4

Forking NetBSD 6th October 2022

you will just need to get a NetBSD 1.1 installation into the right format.

To install QEMU on your machine, do one of the following:

NetBSD using pkgin
pkgin install qemu

OpenBSD
pkg_add qemu

FreeBSD
pkg install qemu

Debian/Ubuntu Linux
apt install qemu

macOS (with Homebrew, https://brew.sh)
brew install qemu

Make sure that you have 2GB of disc space free. It is advisable to work in a dedicated directory.

Throughout the text, % usually represents a command-line prompt on the host machine and # usually
represents a root command-line prompt on the emulated machine. We use csh throughout because it
was the default shell for root on these operating systems. However the commands should work fine if
you decide to use sh or ksh instead.

We’ve assumed paths relative to /usr/src throughout the text, so “cd gnu/usr.bin” means “cd /usr/sr-
c/gnu/usr.bin”. If you use csh the cdpath variable is set so that the short version works by default.

Within the OpenBSD Source code at the time, the directories contained the following code:

Directory Purpose

bin Source for statically linked binaries required to bring the system up

distrib Architecture specific tools to build the OpenBSD release distribution

etc Default configuration files and tools to configure a system

games Terminal games including Adventure, Hangman, Tetris and Trek

gnu GNU GPL and other non-BSD licensed software including the gas
(Assembler), GNU awk, diff, gcc (Compiler), gdb (Debugger), grep, perl,
texinfo and supporting libraries

include The C preprocessor header files containing definitions of functions and
system calls

kerberosIV Programs and libraries for the Kerberos authentication system

Chris Pinnock 5

Forking NetBSD 6th October 2022

Directory Purpose

lib The library source code include the standard C library and math library

libexec Source code for binaries that are not directly run by users (such as Internet
daemons)

lkm Loadable Kernel Modules including the Xfree86 aperture driver

regress Regression tests for testing changes to software

sbin As bin but typically requiring super-user (root) privileges

share Files that are shareable between architectures and systems, such as make
files, time zone information and manual pages

sys The source code for the kernel

usr.bin Source for general system-wide binaries, usually dynamically linked

usr.sbin As usr.bin but typically requiring super-user privileges

Migrating from NetBSD 1.1 to OpenBSD 2.0

1. Obtain the sources for OpenBSD 2.0.

You can check these out from OpenBSD’s CVS repository using tag OPENBSD_2_0 or alternatively
download my prepared copy [S1]. You will need to copy these onto the VM and we will do this via FTP.
If you are not feeling adventurous, you can download a NetBSD 1.1 VM with the sources already in
/usr/src [D2] and skip to step 5.

2. Download and setup the NetBSD 1.1 VM. [D1]

% wget http://downloads.chrispinnock.com/netbsdhist/3-vms/amnesiac-netbsd-
i386-1.1.img.bz2

% bunzip2 amnesiac-netbsd-i386-1.1.img.bz2
% cp amnesiac-netbsd-i386-1.1.img openbsd-i386.img
% chmod u+w openbsd-i386.img

3. Boot the VM.

% qemu-system-i386 -hda openbsd-i386.img -net user -net nic,model=pcnet

Log in as root (no password). Rename the machine insomniac.

echo "insomniac" > /etc/myname

Chris Pinnock 6

Forking NetBSD 6th October 2022

Figure 2: Booting NetBSD/i386 1.1

Chris Pinnock 7

Forking NetBSD 6th October 2022

4. Setup the network on the VM. Get the sources (e.g. FTP) and decompress them. I used an FTP server
on my LAN. For QEMU the following works (but replace 192.168.178.44 with the IP address of your FTP
server):

ifconfig le0 10.0.2.5 netmask 255.255.255.0
route add default 10.0.2.2
add net default: gateway 10.0.2.2
cd /usr/
ftp 192.168.178.44
Connected to 192.168.178.44.
220 files.terry3.de FTP server ready.
Name (192.168.178.44:root): ftp
331 Password required for ftp.
Password:
230 User ftp logged in.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> pass
Passive mode on.
ftp> prompt
Interactive mode off.
ftp> mget openbsd-2.0.tgz
local: openbsd-2.0.tgz remote: openbsd-2.0.tgz
....
ftp> quit
221 Goodbye.

5. Remove the source code and distribution sets.

rm -rf /usr/src /usr/obj /usr/distrib/*
tar zxf openbsd-2.0.tgz

6. Build the OpenBSD kernel.

The usual way to upgrade the kernel between releases is to rebuild the config tool and then build the
kernel with make. However we will need to make two adjustments for this to work.

Firstly the Pentium (586) processor support will not compile because it uses new instructions that the
current system’s assembler does not understand. Also the ahc drivers for the PCI and EISA buses will
not built with our current toolchain. We will build a kernel without these for now and come back to
them.

Additionally, there is a clause in sys/vm/vm_extern.h that will not work with the compiler. We will make
a small adjustment to this file.

Rebuild config:

cd usr.sbin/config
make && make install && make clean

Chris Pinnock 8

Forking NetBSD 6th October 2022

Preserve sys/vm/vm_extern.h and remove lines 86-88 and 90. Here we use ed but you can use vi if you
like [2].

cd sys/vm
cp -p vm_extern.h vm_extern.h.orig
ed vm_extern.h
90d
86,88d
w
q

Make a copy of the GENERIC kernel configuration and delete lines 13, 99 and 100 containing the ahc
driver definitions.

cd sys/arch/i386/conf
cp GENERIC GENERIC1
ed GENERIC1
100d
99d
13d
w
q
config GENERIC1
Don't forget to run "make depend"
cd ../compile/GENERIC1
make depend && make

Preserve the old kernel and install the new kernel. We will call it netbsd because the boot loader will
automatically use this filename, but OpenBSD calls it bsd. We have not installed the OpenBSD boot
loader yet, so we will continue to use the old filename.3

cp /netbsd /netbsd.11
cp bsd /bsd
cp bsd /netbsd

Restore the change to sys/vm/vm_extern.h so that we don’t forget later.

cd /usr/src
cp -p sys/vm/vm_extern.h.orig sys/vm/vm_extern.h

Now reboot the system.

shutdown -r now

7. NetBSD User-land with an OpenBSD kernel

The system should have successfully booted with the OpenBSD kernel. Now it is time to rebuild
user-land.

3Of course, you could interrupt the boot loader and supply a different filename if you prefer.

Chris Pinnock 9

Forking NetBSD 6th October 2022

Figure 3: Booting OpenBSD with the NetBSD boot loader and user-land

Chris Pinnock 10

Forking NetBSD 6th October 2022

8. Make, supporting files and directories

First we rebuild make and install it, then install the supporting make files so that the OpenBSD source
files are compatible. Then we install the target directories on the file system.

cd usr.bin/make
make && make install && make clean
cd share/mk
make install
cd etc
make DESTDIR=/ distrib-dirs

9. Make the object directories. These directories hold the object files during the build and are useful to
segregate the output of the build from the source code.

cd /usr/src
mkdir -p /usr/obj
make obj

10. Rebuild other prerequisites: yacc, lex, tsort, lndir and sh 4. These tools are used during the build
later on.

tsort and lndir are needed when building the GNU tools. A newer sh is needed for shell substitutions in
the new Makefiles.

cd usr.bin/yacc
make && make install && make clean
cd usr.bin/lex
make && make install && make clean
cd usr.bin/tsort
make && make install && make clean
cd usr.bin/lndir
make && make install && make clean
cd bin/sh
make && make install && make clean

11. Next we update the include files and libraries, starting with the compiler runtime support csu. This
code contains initialisation and exit routines used by all programs. Then we rebuild the C library and
then all libraries.

cd lib/csu
make && make install
cd include
make includes
cd lib/libc
make && make install
cd /usr/src/lib

4I rebuild yacc and lex out of habit. You may be able to get by without rebuilding these.

Chris Pinnock 11

Forking NetBSD 6th October 2022

make && make install

12. OpenBSD 2.0 included info pages with the GNU software. We need to build texinfo in advance of
the rest of the build. We build using the SUBDIR trick below because the OpenBSD make files do extra
work than normal to run configure and make in the source directory.

cd gnu/usr.bin
make SUBDIR=texinfo
make SUBDIR=texinfo install
cd usr.bin/info_mkdb
make && make install

13. Rebuild the assembler and linker:

cd gnu/usr.bin/gas
make && make install
cd gnu/usr.bin/ld
make && make install

14. The hardest bit of this exercise is persuading the compiler to build. In [7] we saw a similar problem
upgrading from NetBSD 1.1 to 1.2 (cf. [3]). We will partially build the compiler until it fails, install one
piece of it and then rebuild it.

cd gnu/usr.bin
make SUBDIR=gcc
...breaks...
cp /usr/obj/gnu/usr.bin/gcc/cc1 /usr/libexec
make SUBDIR=gcc
make SUBDIR=gcc install

15. Now we rebuild the rest of user-land, except for three components: libg++, groff and xlint. Groff
doesn’t work because our C++ installation is not finished.

Comment out SUBDIR+= libg++ in gnu/lib/Makefile, remove groff from the SUBDIR declaration
in gnu/usr.bin/Makefile and xlint from the SUBDIR declaration in usr.bin/Makefile.

Then rebuild everything else.

cd /usr/src
make build

16. Reboot the system with shutdown -r now

17. Tidy up libg++, xlint and groff.

The first library is for C++ and once it is made, the C++ compiler will work correctly again. This will
allow us to build groff.

Reverse the changes made in 14 to gnu/lib/Makefile, gnu/usr.bin/Makefile and usr.bin/Makefile. Then:

Chris Pinnock 12

Forking NetBSD 6th October 2022

cd gnu/lib
make && make install
cd gnu/usr.bin
make SUBDIR=groff && make SUBDIR=groff install
cd usr.bin/xlint
make && make install

18. Reboot and rebuild everything from scratch. This is probably unnecessary, but it does ensure that
the system is built correctly and everything is in the right place.

cd /usr/src
make build

19. Install the OpenBSD boot loader.

The command to install the boot block is disklabel, which is the tool for creating BSD partitions. The
boot loader can be found in /usr/mdec.

cd /usr/mdec
disklabel -v -B -b wdboot wd0

20. The GENERIC kernel will now build correctly. Build it and install it at /bsd (and if you want save a
copy at /bsd.20).

21. Reboot and check that you have a working OpenBSD system.

At this point we are almost complete. What remains is to tidy up /etc. We leave that as an exercise for
the reader. A copy of my VM upgraded to OpenBSD 2.0 can be found on my website [D3].

Exercises

1. Tidy up /etc and /dev

1. From /usr/src/etc, update /etc with OpenBSD’s configuration files.
2. Hint: Update /etc/ttys before making device nodes
3. Hint: Update MAKEDEV from etc/etc.i386 in /dev and run it ./MAKEDEV all in the /dev direc-

tory.

2. Process Improvement

1. Are there any ways that you can improve the process above?
2. Is it necessary to build yacc and lex?
3. Are there any files in /usr/src that would help you to determine whether a program should have

been installed or not?

Chris Pinnock 13

Forking NetBSD 6th October 2022

4. Try the build again but without the order above by building the kernel, rebooting and then
running make build. When something fails, look at the errors and try to determine the root cases.

For example, if one does not rebuild /bin/sh before the full build, some of the manual pages will not
install correctly. You can examine bsd.prog.mk to figure out why this might be caused by the shell.

3. Upgrade the system to 2.1

Hints:

1. Clean out /usr/obj.
2. Get the OpenBSD 2.1 source code from CVS or [S2]. Replace /usr/src.
3. Build and install make.
4. Install share/mk.
5. Make the object directories with make obj.
6. Build and install mktemp and config.
7. Build GENERIC without the aic and ahc drivers.
8. Install and reboot.
9. Build and install compile_et and mk_cmds.

10. Install the include files.
11. Build and install lib.
12. In this order, build and install in gnu/usr.bin: gas, ld, texinfo, then gcc (use the SUBDIR trick for

texinfo and gcc).
13. make build.
14. Update to the new MAKEDEV and run it. Also update /etc/ttys.
15. Before you reboot change ufs to ffs in /etc/fstab.
16. Build GENERIC with the missing drivers.

Acknowledgements

This is the third paper I’ve written on early BSD distributions. In addition to the people that helped
me with [6] and [7], I would like to thank Anil Madhavapeddy and Richard Mortier at the University of
Cambridge for their encouragement. Roland Dowdeswell and Arrigo Triulzi also made some helpful
suggestions.

Chris Pinnock 14

Forking NetBSD 6th October 2022

Bibliography

References

[1] A Quick Guide to the GPLv3, Brett Smith, GNU.Org.

[2] Ed Mastery: The Standard Unix Text Editor, Michael W. Lucas, Tilted Windmill Press, 2018.

[3] Upgrading to gcc 2.7.2, NetBSD Current Users mailing list, December 1995.

[4] The OpenBSD Project, The OpenBSD Project.

[5] OpenBSD CVS Source code tree, The OpenBSD Project.

[6] Transitioning from a.out to ELF on NetBSD, Chris Pinnock, Preprint August 2022

[7] NetBSD/i386 from 1.0 to present, Chris Pinnock, Preprint September 2022

[8] BSD licenses, Wikipedia.

[9] DragonFly BSD, Wikipedia.

[10] FreeBSD, Wikipedia.

[11] GNU Compiler Collection, EGCS, Wikipedia.

[12] List of software forks, Wikipedia.

[13] MariaDB, Wikipedia.

[14] MySQL, Wikipedia.

[15] NetBSD, Wikipedia.

[16] OpenBSD, Wikipedia.

[17] X.Org, Wikipedia.

Media

[D1] NetBSD 1.1 VM

[D2] NetBSD 1.1 VM with OpenBSD 2.0 sources

[D3] OpenBSD 2.0 VM

[S1] OpenBSD 2.0 sources

[S2] OpenBSD 2.1 sources

Chris Pinnock 15

https://www.gnu.org/licenses/quick-guide-gplv3.html
https://www.tiltedwindmillpress.com
https://mail-index.netbsd.org/current-users/1995/12/07/0020.html
https://www.openbsd.org/
https://cvsweb.openbsd.org
https://chrispinnock.com/2022/08/20/netbsdaout/
https://chrispinnock.com/2022/09/30/netbsdhist/
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/DragonFly_BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/GNU_Compiler_Collection#EGCS_fork
https://en.wikipedia.org/wiki/List_of_software_forks
https://en.wikipedia.org/wiki/MariaDB
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/X.Org_Server
http://downloads.chrispinnock.com/nethist/3-vms/amnesiac-netbsd-i386-1.1.img.bz2
http://downloads.chrispinnock.com/net2open/insomniac-netbsd-1.1-lazy.img.bz2
http://downloads.chrispinnock.com/net2open/insomniac-openbsd-i386-2.0.img.bz2
http://downloads.chrispinnock.com/net2open/openbsd-2.0.tgz
http://downloads.chrispinnock.com/net2open/openbsd-2.1.tgz

	Abstract
	Disclaimer
	Introduction
	Preparation
	Migrating from NetBSD 1.1 to OpenBSD 2.0
	Exercises
	Acknowledgements
	Bibliography
	References
	Media

